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Motivation
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Motivation

« Non-polar director field 7(¥) € RP? = S? /7

» Hopfions 7 : S — RP? and skyrmions 7 : S? — RP?

* Presence of topological defects cause orientational distortions — non-uniform strain
 Flexoelectric effect: electric polarization response ﬁf('ﬁ) — induced electric field E(ﬁ')
- Associated electrostatic self-energy o« E(i) - P;(i) —  back-reaction on ii

* How to include this electrostatic self-interaction and back-reaction?

« Analogous to demagnetization in chiral magnets (depolarization)
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Chiral liquid
crystals
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Isotropic elastic liquid crystal
* Frank-Oseen free energy Is Epg — %K / d%wﬁ‘g
JRS

Energy minimizers are solutions of Laplace equation A7ni = 0

Metastable inhomogeneous solutions found by Belavin and Polyakov!' in ferromagnets

More insight can be gained by considering elastic modes

Decompose director gradient tensor into these normal modes 2! (B‘? T,5 A)

1 1

[1] A.A. Belavin and A.M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, Pis'ma Zh. E'ksp. Teor. Fiz. 22 (1975) 503
[2] J.V. Selinger, Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals, Lig. Cryst. Rev. 6 (2018) 129
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1 1
dinj = —n;Bj|+ ETEz’jknk + 55(51-3- —nng) + A

* Standard bend vector
e |nvariant under 7 — —

* Elastic bend energy |B‘|2 = [T X (ﬁ x i1)]?

]
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1 1
81".-'13' = —ﬂriBj + _TEijknk + 58(613 . ?’liﬂj) + A

A/2

- Pseudoscalar twist T =7 - (V x i)

]

e |nvariant under 77 — —n

el
puganasnannnne ] “‘“

» Elastic twist energy 7% = [7i - (ﬁ x 11)]?
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L]

1
81".-'13' m_— —ﬂriBj + ETEijknk + —S((St'j — ?’liﬂj) + A

« Standard splay vector S = 57 = 7(V - 7i)

e |nvariant under 77 — —n

goguaaeuouaane "i""i“““

» Elastic splay energy |S7i|? = (ﬁ . 17)?
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Nematic liquid crystal (NLC)

Isotropic Frank-Oseen free energy for a NLC is

1 _ .
Ero = 5K / de{\S\2+T2+ \BP}
NAY)

Modes cost elastic free energy
Energy cost of splay, twist and bend deformations are equivalent
Energy of anisotropic NLC:

d - d . 2 d . 2
EFOZE/ﬂd%{%(V-ﬁ)M%[ﬁ-(vxﬁ)] +%[ﬁx(?xﬁ)] }

Can introduce enantiomorphy into the system —— chiral liquid crystals
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Chiral liquid crystal (CLC)
2T

 Molecular chirality characterized by (pseudoscalar) cholesteric twist g0 = ?
 Enantiomorphy introduced via twist 1"+ T + go 13!
* Frank-Oseen free energy picks up 15t order term

- K . 2 K . 2
Fro = [dg’x{?l(v-ﬁ)u—g[ﬁ-(vxﬁ)] +73[ﬁ><V><ﬁ] +Kgqg[ﬁ-
J )

+ V(ﬁ)}

v
* Equivalent to DMI term in chiral magnets arising from Dresselhaus SOC

— Mechanism responsible for stabilization of bulk skyrmions
— Favours Bloch modulations

[3] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995)
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Experimental realization

* CLCs placed between parallel plates with separation d

System restricted to confined geometry!#!

d
Q= {(:ry::) eER? : |z| < —}

- 2
_, U
« Apply potential difference U ——  external electric field Fext = (0,}0? E)
« CLCs are dielectric materials cole =
gelec — _T(Eext ) ﬁ)g

Can impose strong homeotropic anchoring 7i(x. y, 2 = £d/2) = ny

Mimicked in 2D systems by including Rapini-Papoular homeotropic surface anchoring
potentiall®] 1

ga,nch = = E HrrU ?‘lg
L Effective surface anchoring strength

[4] S. Afghah and J.V. Selinger, Theory of helicoids and skyrmions in confined cholesteric liquid crystals, Phys. Rev. E 96 (2017) 012708
[5] A. Rapini and M. Papoular, Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois, Le J. Phys. Collog. 30, C4 (1969)
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Electrostatic self-
interaction




Flexoelectric polarization

» Flexoelectricity: coupling between electrical polarization and non-uniform strain

Orientational distortions —  macroscopic electric polarization Py

Fix splay, induce polarization:

1
F=-K
9 1

Fix bend, induce polarization:

—

3 (K
A(V - 7i) — e, P -

AKy+ p

2 1 - .
+§P'-|P\2 — —_.:U:>P:( )(Vﬁ)ﬁ

1 2 1 o oF _, c3 3 ) . s/
F=-K Lape . L _0=sP= (2 A x (V. i

Polarization caused by mechanical curvature (flexion) of director (flexoelectric)!67!:

7@ x (V x ii)] — 3P

}%:mkﬁﬂmymﬂﬁxﬁXﬁﬂ

[6] R.B. Meyer, Piezoelectric effects in liquid crystals, Phys. Rev. Lett. 22 (1969) 918
[7] J.S. Patel and R.B. Meyer, Flexoelectric electro-optics of a cholesteric liquid crystal, Phys. Rev. Lett. 58 (1987) 1538
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Electrostatic potential

* Flexoelectric polarization induces continuous electric dipole moment distribution F’}

Associated electric scalar potential

4meg | 1z — ]? € Ja

Green's function for Laplacian on R?
1 =

~ dr|7— g

G(7,9)

Electrostatic potential satisfies the Poisson equation!8! |[Ap = — V7 = —E—V - Py
= e, 0
Gauss' IawV-E:@\ —
€0 p = —V - Py| electric charge density

[8] J. Yang, Y. Zou, W. Tang, J. Li, M. Huang and S. Aya, Spontaneous electric-polarization topology in confined ferroelectric nematics, Nat Commun 13 (2022) 7806
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Flexoelectric self-energy s
Ap=——V.-P;
- Energy of a continuous dipole density distribution!®! €0

Fﬂexo —

1
FEXD:__
fle >

[ 37

1

——/d%E"(f)-Pf(;f) zlfd%ﬁfﬁ{p
2 Jq 2 Jq

* More useful to express the flexoelectric energy as

—_—

v

)

7 0f) JIR3

* |n all cases we consider, surface term vanishes—T

 Coincides with the electrostatic self-energy of the charge distribution p = —(V - P})

Fﬂexo .

2 [ d°7pAp = 5“ &’z |Vy|* = %“ 4’z |E|?
JR3

2

€

. RS 5 RS

[9] L.M. Blinov, Structure and Properties of Liquid Crystals, Springer Dordrecht (2011)




EEEEEEEEE

Rescaling F o

* Length and energy scales: Ly = —

Scalar potential ¢ = A

1 K, 1 K?
ks ‘ED = E g
qo K2 qo 2

Flexoelectric energy and Poisson equation under rescaling

1 LU/\Q €N

Ji-E'lYI:le:-[n:n . 5 E[] L dgif? ‘;Z'A:E*;:' A;@@
. . iy e ‘LU)KQE[] :
Dimensionless vacuum permittivity € = = | —
E[] Eg/\

Necessary rescaling is

Eat

Fﬂexo —

s [ @a00ep, Asp—-
J (2

™

Adimensional polarization

P= (Vs )i+ =(ii x [Vz x 7))

€1

;UH/
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Scale invariance of Fg..,

* Derrick scaling ¥ — 7’ = u7

—

Director rescales as 77, = 1 (u)

— Polarization P, = y (\?’ - ﬁ(ﬁ-f)) f(ui) + ,u:—”:’ (ﬁ(,u.f) x V' x ﬁ(ﬁ-f)) — uP(ud)

1 - 1 S .
Poisson equation: Ay, = —EV" P, = —EV" - P(uZ) = Alp(u)

Scalar potential must scale as ¢u(T) = @(uT)

In two dimensions, the flexoelectric Frank-Oseen energy rescales as

1 1
Fppo(ﬁ) = FQ + _Fl - _QFU + Fﬂexo < Conformally

invariant in 2D
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First variation of [,

First variation is d B € , ,
7| Fexo(Rt) = 3 / &’z (PApl+ pAY)
tli_o 2

JR2
Potential does not have compact support /

/ d*z pAp = / d*z pA¢ — % ds- (goﬁgb - gbﬁip)
JR? JR2 JoB. (0)

Does have 1/r localization

R 2
| lim = [ (pxdp —p*xdy) = lim i (por — @pr)dd =0
* First variation reduces to q Need to
a Fﬂexo(ﬁt) — € / dBI\pA\]@/ compute
t=0 J €2
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First variation of [,

* First variation s d

Fliexo(7it) = € / A’z gAY

dt|,_, Ja
* Poisson equation variation /
| d ~
Ap=—=V. .| — P(n
14 Ev (dt e (nt))

* Flexoelectric variation becomes

d i d s - d .

— | Fhexo(7it) = — | dPzoV.-|—| P(# :/dQV--— P(7

| Fuoati = = [ @ (3 » i) = [ 2V (5 g )

2 . — — —
— [2 d“z (grad: Fyexol) * € g = atﬂt‘t:[]
JE

— — —

grad Fexo = =2 [((‘7 X 1) X ﬁ@) + (‘ﬁ x (Vg x ﬁ))] —V(Ve i)+ (V- -7)Ve

€1
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Numerical method
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Relation to chiral magnets

 Stability of 2D skyrmions in chiral liquid crystals arises frorm same mechanism responsible for
existence of skyrmions in chiral magnetic systems!'©!

* One constant approximation K; = K
 Vector identity for unit vector 7 "

—

(ViR)? = (‘?-ﬁ)QJr(ﬁ-‘?xﬁ)ng(ﬁx‘?xﬁ)ng‘?- [(ﬁ-‘?)ﬁ—(‘?-ﬁ)ﬁ]

* Frank-Oseen energy reduces to chiral magnet energy with Dresselhaus DMI

1 - 11
_ 2 JLooave, [=. D+ = —v(i
FFO_._/REd ;1:{2(??1) +[n (Vxn)]+q§ - (n)}

[10] A.O. Leonov, I.E. Dragunov, U.K. RoBler and A.N. Bogdanov, Theory of skyrmion states in liquid crystals, Phys. Rev. E 90 (2014) 042502
[11] A. Hubert and R. Schafer, Magnetic Domains, Springer Berlin, Heidelberg (2014)
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Numerical problem

- Director field 7i(%) € RP?
» Topological solitons are minimizers of the adimensional flexoelectric Frank-Oseen energy

1 - 11 1=~ -
Frrolii] = / d’x {—(‘Vﬁ)2 + [ﬁ (V x ﬁ:)] + 5=V(@A)+ =P w}
Ja 2 g5 K 2
* Electrostatic potential subject to constraint
Ap=—-LV.P Q. d
: ‘ :..m 3 Q:{(Iy:)ERS \:::\{—}
Ap = inR”/Q 2

« Adimensional self-induced polarization is

P’:(‘ﬁ-ﬁ)ﬁ+ﬁ—3[ﬁx(ﬁxﬁ)]

€1
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Electrostatic potential constraint

» Flexoelectric self-interaction introduces non-locality into minimization problem

Reformulate problem as unconstrained optimization problem!'2l: minimize the functional

1 1 = =
F(g@)zi/Pgdgx\dga\2+2/{1d3xw(v-}j)

Director n is fixed
— So is divergence of polarization

— —_—  —

v.p=28 [(ﬁxﬁ)g—ﬁ-[ﬁ(ﬁ-ﬁ)wﬁ-vgﬁ] +(V-7)2 47t [V(V )]

€1

Approach: non-linear conjugate gradient method with line search strategy!'>!

Conjugate stepsize determined using Polak-Ribiere-Polyak method

[12] P. Leask and M. Speight, Magnetostatic self-interactions of bulk magnetic skyrmion textures in chiral ferromagnets, In preparation (2025)
[13] D. Harland, P. Leask and M. Speight, Skyrmion crystals stabilized by w-mesons, J. High Energ. Phys. 06 (2024) 116
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Arrested Newton flow

* Accelerated gradient descent with flow arresting criteria

Starting from rest 9;7i;|;—o = 0

Solve for motion of a particle in the configuration space under the potential frro
d?

—

ﬁnt — —gra.dﬁ (FF{:} + FHEXD) [ﬁt]

Reduce problem to coupled system of 15t order ODEs

Solve coupled system simultaneously with 4th order Runge-Kutta method
Flow arresting: if Frro (t + 0t) > Frro(t) — set 0;7i(t + 6t) = 0 and restart flow
Convergence criteria: || Frro (71) ||sc < 107°
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Algorithm summary

1. Perform step of ANF method for director field 77 using RK4 method
Solve Poisson's equation for electric potential ¢ using NCGD with PRP method

3. Compute total energy of the configuration (7i, ¥i) and compare to the energy of the
previous configuration (7i;_1, ¢;_1). If energy has increased, arrest the flow

4. Check convergence criteria:|| Frro(7)||s < 107° If the convergence criteria has been
satisfied, then stop the algorithm

5. Repeat the process (return to step 1)
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Liquid crystal
skyrmions

N
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Twist favoured Bloch skyrmions

* In chiral magnets, demagnetizing magnetic potential satisfies Ay

* Dresselhaus DMI favours Bloch skyrmions

NBloch (7, 8) = sin f(r)éy + cos f(*r)é'z\

—

* Bloch skyrmions in chiral magnets are solenoidal V - ngjoen = 0 f
— AY=0 = Fexo=0 j
— Unaffected by magnetostatic self-interaction

* CLCs: Bloch ansatz is solenoidal, associated polarization is not

y es 1df

N €3 1 . 9D . —
Pgloech = — —sin” f(r)e,  —» VAT i s
€rr ey rdr

P I o g i S NG

SSRENAG N

AT T .

£ MR ESEs O L =

sin2f(r) #0

— Bloch skyrmions in liquid crystals are affected by electrostatic self-interaction
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Twist favoured Bloch skyrmions(€1 = e3)

Negatively charged core

ii(z, ) p(z,y) (C/pm?)

NBloch (7, 8) = sin f(r)éy + cos f(r)e, z (um)

Quter ring of positive charge
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Splay and bend favoured liquid crystals

1 N ~
* Nematic liquid crystal f'ro = =K / d’x {|S‘2 +T° + ‘B‘Q}

2

¢ Introduce enantiomorphy — Chiral (twist favoured) liquid crystal

1

Fro = 5K | &% {ISP+ (T + a0)* + |57}
J €2

* What about splay and bend favoured liquid crystals?

F:E/d3x{(,§+§g
2 Jq

* For convenience, consider Sy = By = go€s

K
— F= /dgﬁ{—(Vﬁ)QJqu[j -
J 2

— —

)?+T° + (B + Bo)’}

DMI from

Rashba SOC

+ V(ﬁ)}
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Splay and bend favoured Néel skyrmions

« Adimensional splay and bend favoured liquid crystals

1
F:/ dgx{—(Vﬁ)Q
JR? 2

!
Rashba DMI term prefers Néel hedgehog skyrmions

+ [nz(ﬁ' ‘M) — - ﬁnz] +

NNéel (7, 0) = sin f(r)ér + cos f(r)e, —— -

Néel polarization picks up out-of-plane component | ‘ 1
Equal flexoelectric coefficients e; =e3 = V- ﬁBchh — V- ﬁNéel — —d—f sin2f(r)
r

Flexoelectric Bloch and Néel skyrmions equivalent for e; = ej
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Splay and bend favoured Néel skyrmions(€e1 < €3)

Neutral core Inner ring of negative charge

() plx,y) (C/pm’) ) (Nm/C)

0
I -0.05

1-0.1

1-0.15

-0.2
-0.25

ﬁNéel(T‘g 9) = Si]flf(?")é} + CDE.f(r)é*z/ 4 x 10718

QOuter ring of positive charge — _V. p‘f = oAy
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Liquid crystal
hopfions

N
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Hopfions

» Can be interpreted as a twisted skyrmion string, forming a closed loop in real space
» They comprise inter-linked closed-loop preimages of constant 7i(x, vy, z)
- Linking of closed-loop preimages of anti-podal points in S*/Z, = RP? defines Hopf index

ni(z,y,z) = £0.9 n3(z,y,2) =0 /

QHopt € 73(RP?) = 73(S5?)

Z
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Hopfions

1 ik
« Explicit Hopf index!™!: Qpops = /dee”;‘AiEjk
Q

I 1
* Introduce vector potential A such that F}; = Eab‘:naﬂinb@jnc — E(S.iAj — 0;A;)
* Hopfion ansatz with Hopf index Qops = 1115161

iong(r. 0. 2) 4r[2z cos — (r? + 22 —1)sinf] 4r[2zsinf + (r? + 22 — 1) cos 0] 1 8r?
MHopt(r, 0, 2) = ? 11—
e (14 r2 + 22)2 - (1+ 72+ 22)2 (1424 22)2
* Hopfion is not axially symmetric, but is equivariant (n1 +1ing) — (n1 + ing)e™®

« Spatial rotations @ — € + « induces rotation in (71, n2)-plane through same angle
* Energy is invariant under combined rotations —  Energy is axially symmetric
[14] J. Hietarinta, J. Palmu, J. Jaykka and P. Pakkanen, Scattering of knotted vortices (Hopfions) in the Faddeev—Skyrme model, New J. Phys. 14 (2012) 013013

[15] P. Sutcliffe, Hopfions in chiral magnets, J. Phys. A: Math. Theor. 51 (2018) 375401
[16] J. Hietarinta and P. Salo, Faddeev-Hopf knots: dynamics of linked un-knots, Phys. Lett. B 451 (1999) 60
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Hopfion structure(€1 — €3 = 4pCm_1)

Skyrmion twisting as it winds around the hopfion
core, changing from an in-plane skyrmion to an
out-of-plane antiskyrmion /

x (pm)

y (pm)

Structure of Bloch skyrmionium or a 2m-vortex!['’!

10

z (pm)
y (pm)

[17] A. Bogdanov and A. Hubert, The stability of vortex-like structures in uniaxial ferromagnets, J. Magn. Magn. Mater. 195 (1999) 182
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Flexoelectric CLC hopfion (¢; = e3 = 4 pCm_l)

w(z,y,2) (V) p(z,y,2) (V)
i o Electric scalar potential
) . non-zero inR? /)
0 5 ‘:(()”m) 15 20 0 5 "1.%”“) 15 20
pl@,y, 2) (C/pm®)

& g Electric charge density confined within

14 ’ d
— 12 . 3
S0 ‘ 18 = {(I’?y?z) S I’zl < §
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Hopfion to skyrmion transition

20
15
10

5

(1 = e3 = 4pCm™1)

5

¥
b

15 20

10
10

®
Yy

15 20

10
10

20

15

10

5

20

15

10

15 20

10
10

15 20

10
10

(e1 = e3 = 8pCm™ 1)
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Hopfion — Skyrmion(€1 — €3 = SPCm_l)

Skyrmion terminating at point defects due to
boundary conditions!'8!

Structure of a Bloch skyrmion

x (pm) x (pm)
Yy (;LIII) i Yy (/Llll)

[18] J. B. Tai and I. I. Smalyukh, Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral
nematics, Phys. Rev. E 101 (2020) 042702
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TS
i i —e3 = 8pCm ™~
Flexoelectric CLC skyrmion(€; = €3 = s plLm
o(z,y,2) (V) p(z,y,2) (V)
i I Electric scalar potential
4 2 " non-zero in R” /Q
00 5 ‘,1?/““) 15 20 00 5 _:?/m,) 15 20
p(z,,2) (C/pm®) plz,y,z) (C/um*)
e 0 . Electric charge density confined within
o . o 3 d
g L) (BE - Q=1 (2,y,2) €R® : |o| < 3
Va 1 8 ' . . 2
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Conclusion
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Concluding remarks

Topological defects induce non-uniform strain
Flexoelectric polarization response — self-induced internal electric field

We have shown how to include the electrostatic self-energy and how to compute the back-
reaction

Stray depolarizing field outside cell included
Method can be applied 3D skyrmion textures in chiral magnets

Main differences with chiral magnets (CM):

« Electric potential depends on divergence of polarization (divergence of magnetization in CM)
* Electrostatic energy is second order (zeroth order in CM)
* Bloch skyrmions affected by self-interaction (unaffected in CM)

Flexoelectric self-interaction can cause hopfion to transition into skyrmion
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