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Motivation



Motivation

Motivation
• ZHK model provides an effective field theory for the fractional quantum Hall effect1
• Describes the system as a condensate of anyons coupled to a Chern–Simons gauge field
• We extend that idea to a relativistic setting
⇒ Vortices act as flux–charge composites with superconducting behavior2
• Previous studies introduce auxiliary neutral scalar field to make the model self-dual3
• Others consider a generalization with a scalar-field-dependent dielectric function4, or both5

⇒ BPS and non-interacting vortices
• We explicitly do not do this and study non-BPS vortex anyons
• We consider the Chern–Simons–Landau–Ginzburg, or Maxwell–Chern–Simons–Higgs, model

1S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989)
2D.-H. Lee and M. P. A. Fisher, Phys. Rev. Lett. 63, 903 (1989)
3G. V. Dunne and C. A. Trugenberger, Rev. D 43, 1323 (1991)
4P. K. Ghosh, Phys. Rev. D 49, 5458 (1994)
5J. Andrade, R. Casana, and E. da Hora, Phys. Rev. D 111, 036019 (2025)
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Chern–Simons–Landau–Ginzburg theory

Model setup and parameters

• Superconducting order parameter / condensate / Higgs field ψ : R2+1 → C
• Abelian gauge field A = (A0,A) ∈ R2+1

• Gauge covariant derivative Dµ = ∂µ + iqAµ
• Gauge field strength Fµν = ∂µAν – ∂νAµ
⇒ Magnetic field B = F12 and electric field Ei = F0i
• Minkowski spacetime R2+1, endowed with metric η and signature (+ – –)
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Chern–Simons–Landau–Ginzburg theory

CSLG theory
• CSLG theory is a topologically massive gauge theory that is Lorentz invariant
• The CSLG Lagrangian is6,7

L =
1
2DµψDµψ –

1
4FµνFµν – V (|ψ|) +

κ

4 ε
αβγAαFβγ

• First three terms correspond to the Ginzburg–Landau, or abelian Higgs, model
• Last term is the topological Chern–Simons term

LCS =
κ

4 ε
αβγAαFβγ =

κ

2
(
A0B – εijAiEj

)
• CS term breaks parity (P) and time reversal (T) explicitly, but preserves PT
• We are interested in the effect the CS term has on vortices

6T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys. 313, 497 (2004)
7E. Fradkin, Phys. Rev. B 42, 570 (1990)
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Chern–Simons–Landau–Ginzburg theory

Gauss’ law
• Static Lagrangian of the CSLG theory is

Lstatic =
1
2(∂iA0)2 +

κ

2
(
A0B + εijAi∂jA0

)
+

1
2q2A2

0|ψ|
2 –

[
1
2DiψDiψ +

1
2B2 + V (|ψ|)

]
• Can simplify by an integration by parts∫

R2
d2x εijAi∂jA0 =

∫
R2

d2x A0B

• Hence, static Lagrangian can be expressed as

Lstatic =
1
2(∂iA0)2 + κA0B +

1
2q2A2

0|ψ|
2 –

[
1
2DiψDiψ +

1
2B2 + V (|ψ|)

]
• Varying this w.r.t. A0 reveals Gauss’ law as an elliptic PDE

δLstatic
δA0

= 0 ⇒
(
–∇2 + q2|ψ|2

)
A0 = –κB
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Chern–Simons–Landau–Ginzburg theory

Maxwell charge
• Gauss’ law enforces that electric charge and magnetic flux are not independent
• The electric field is E = –∇A0 6= 0
• Compute electric charge density via Maxwell equation & Gauss law(

–∇2 + q2|ψ|2
)

A0 = –κB ⇒ ρe = ∇ · E = –∇2A0 = –κB – q2|ψ|2A0

• Total electric charge is

Qe =
∫
R2

d2x ρe = –κΦ – q2
∫
R2

d2x A0|ψ|2, Φ =
∫
R2

d2xB

• Localized static solutions: A0 decays exponentially and Ei → 0 at spatial infinity
⇒ Qe = 0 for localized solutions, and ∫

R2
d2x q2A0|ψ|2 = –κΦ
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Chern–Simons–Landau–Ginzburg theory

Flux-charge binding
• Condensate carries nontrivial internal U(1) charge Qm
• Associated Noether (super)current is

Jµ =
iq
2 (ψ∂µψ̄ – ψ̄∂µψ) + q2Aµ|ψ|2

• Corresponding Noether matter charge density

ρm = J0 = q2A0|ψ|2

• Magnetic flux Φ and Noether charge Qm are bound together by8∫
R2

d2x q2A0|ψ|2 = –κΦ ⇒ Qm =
∫
R2

d2x ρm = –κΦ

⇒ Each vortex simultaneously carries a flux quantum Φ and a proportional electric charge Qm = –κΦ
8S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. 281, 409 (2000)
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Chern–Simons–Landau–Ginzburg theory

Flux-charge binding is topological

• The flux-charge binding mechanism is purely topological
• Arises from the Chern–Simons term and Gauss law, Maxwell term plays no part
• Consider the Chern–Simons–Higgs model9

L =
1
2DµψDµψ +

κ

4 ε
αβγAαFβγ – V (|ψ|)

• Gauss’ law is algebraic A0 = –
κB

q2|ψ|2
• Noether charge is still

Qm =
∫
R2

d2x q2A0|ψ|2 = –κ
∫
R2

d2xB = –κΦ

• This is the flux–charge binding mechanism → purely topological, enforced by the CS term

9S. A. Parameswaran, S. A. Kivelson, E. H. Rezayi, S. H. Simon, S. L. Sondhi, and B. Z. Spivak, Phys. Rev. B 85, 241307 (2012)
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Vortex anyons

Static energy
• The static energy of the CSLG theory is

E = –Lstatic =
1
2DiψDiψ +

1
2B2 + V (|ψ|) –

1
2(∂iA0)2 – κA0B –

1
2q2A2

0|ψ|
2

• At a first glance this appears not to be bounded from below
• Inner product of Gauss’ law with the A0 and integrating by parts gives

–
∫
R2

d2x κA0B =
∫
R2

d2x
[
–A0∂i∂iA0 + q2|ψ|2A2

0
]
=

∫
R2

d2x
[
(∂iA0)2 + q2|ψ|2A2

0
]

• Using this relation yields an energy that is positive (semi-)definite and bounded below

E =
∫
R2

d2x
{
1
2|Dψ|2 + 1

2B2 + V (|ψ|) +
1
2|∇A0|2 +

1
2q2A2

0|ψ|
2
}
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Vortex anyons

Non-local → constrained local

• Static vortex anyons are minimizers of the static energy

E =
∫
R2

d2x
{
1
2|Dψ|2 + 1

2B2 + V (|ψ|) +
1
2|∇A0|2 +

1
2q2A2

0|ψ|
2
}

subject to Gauss’ law (
–∇2 + q2|ψ|2

)
A0 = –κB

• As the energy is bounded below ⇒ amenable to minimization methods
• This is inherently a non-local problem, but has been reformulated as a constrained minimization problem
• Challenges of this type are not unique to the CSLG framework
• They arise more broadly across both condensed matter and high energy physics

Paul Leask Solitons at Work 14/42



Vortex anyons

Non-local problems in high energy & condensed matter physics
• Nuclear skyrmions stabilized by ω-mesons10,11 (Skyrme field - ϕ ∈ SU(2), potential - ω ∈ R):

E =
1
8 |dϕ|

2 +
1
4V (ϕ) +

1
2 |dω|

2 +
1
2ω

2,
(
–∇2 + 1

)
ω = –cωB0

• Demagnetization in chiral magnets12 (Magnetization - n ∈ S2, magnetic potential - ψ ∈ R):

E =
J
2|dn|2 +D

3∑
i=1

di · (n × ∂in) + V (n) + 1
2µ0

|dψ|2, –∇2ψ = –µ0Ms[∇ · n]

• Flexoelectric self-polarization in chiral liquid crystals13 (Director - n ∈ RP2, electric potential - ϕ ∈ R):

E =
K
2 |dn|2 + Kq0

[
n · (∇× n)

]
+ V (n) + ε0

2 |dϕ|2, –∇2ϕ = –
1
ε0
[∇ · Pf (n)]

10S. B. Gudnason and M. Speight, J. High Energ. Phys. 07, 184 (2020)
11D. Harland, P. Leask, and M. Speight, J. High Energ. Phys. 06, 116 (2024)
12P. Leask and M. Speight, arXiv:2504.17772 [cond-mat.mes-hall]
13P. Leask, Phys. Rev. Res. 7, 043001 (2025)
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Vortex anyons

Constrained Newton flow
• Problems of this nature are well-suited to the constrained Newton flow method14
• Static vortex anyons are critical points of the static energy
⇒ Solutions of static Ginzburg–Landau equations

DiDiψ = 2∂V
∂ψ̄

– q2A2
0ψ, ∂j(∂jAi – ∂iAj) = Ji – κεij∂jA0

• Must also satisfy Gauss’ law
(
–∂i∂i + q2|ψ|2

)
A0 = –κB

• We reformulate Gauss constraint as an unconstrained optimization problem

min
ψ const.

F(A0), F(A0) =
∫
R2

d2x
{
1
2|∇A0|2 +

1
2q2|ψ|2A2

0 + κBA0

}
• Solve using non-linear conjugate gradient descent with line search strategy
• Conjugate step-size updated using Polak–Ribière–Polyak method

14The CUDA code for this method in the CSLG theory is available on my public github repository https://github.com/Paulnleask/cuSuperAnyon
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Vortex anyons

Constrained Newton flow
• We now solve the static GL equations, assuming A0 satisfies the Gauss constraint
⇒ Arrested Newton flow15: Accelerated gradient descent method with flow arresting criteria
• Formulate the minimization as a second order dynamical problem and solve the second order system

d2ψ
dt2

=
1
2DiDiψ –

∂V
∂ψ̄

+
1
2q2A2

0ψ,
d2Ai
dt2

= ∂j(∂jAi – ∂iAj) – Ji + κεij∂jA0,

• Can be reduced to a coupled first order system ⇒ solve using RK4
• As initial configuration, we use an extended Abrikosov–Nielsen–Olesen (ANO) ansatz16,17

ψ = mφ(r)e iNθ, A =
Na(r)

qr (sin θ, – cos θ) , A0 = –
κB

q2m2

15S. B. Gudnason and J. M. Speight, J. High Energ. Phys. 07, 184 (2020)
16A. Abrikosov, J. Phys. Chem. Solids. 2, 199 (1957)
17H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973)
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Hybrid superconducting typology

Abelian Higgs model

• Consider AH model with the conventional quartic Higgs potential

L =
1
2DµψDµψ –

1
4FµνFµν – V (|ψ|), V (|ψ|) =

λ

8

(
m2 – |ψ|2

)2
• Higgs mass mH =

√
λm, coherence length ξs = 1/mH

• Proca mass mA = qm, magnetic penetration depth ξm = 1/mA
• GL parameter dictating superconducting typology is κGL = ξm/ξs =

√
λ/q:

•
√
λ < q: Type-I, attractive intervortex force

•
√
λ > q: Type-II, repulsive intervortex force

•
√
λ = q: BPS, no intervortex force
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Hybrid superconducting typology

Anyon bound states

• CSLG theory: type-I/II dichotomy is broken
• Each vortex carries a magnetic flux + proportional Noether electric charge
⇒ Induces electrostatic repulsion between vortices
• In the typical type-II repulsive regime (κ > 1), the repulsive interaction force is now stronger
• At critical coupling λ = 1, vortices now repel one another
• In the type-I attractive regime (λ < 1), κ can force vortex cores (zeros of ψ) to split
• If κ is large, the interaction force becomes entirely repulsive
• For relatively small κ, vortex cores split but remain bounded
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Hybrid superconducting typology
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Hybrid superconducting typology

Paul Leask Solitons at Work 23/42



Hybrid superconducting typology
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Hybrid superconducting typology

Binding energies
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Hybrid superconducting typology

Hybrid superconductivity

• Consider the type-I regime (λ < 1) with κ large enough to cause core splitting
• Binding energy remains negative and interaction energy is non-monotonic
⇒ Bound stable multi-vortex anyon states
⇒ Hybridization of type I/II superconductivity behavior
• Look to understand long-range interactions for clues
• Must first consider the static screening structure and penetration depths
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Screening structure

Dynamical gauge masses
• Let us focus on the gauge field by considering the abelian Maxwell–Chern–Simons Lagrangian

L = –
1
4FµνFµν + κ

4 ε
µνρAµFνρ +

1
2m2

AAµAµ

• mA = qm is the usual Higgs (Proca) mass from symmetry breaking
• Equation of motion for Aµ (in the Lorenz gauge ∂µAµ = 0) after Fourier transforming ∂µ 7→ ipµ is[

(p2 – m2
A)ηµν + iκεµνρpρ

]
Aν = 0, p = (ω, k)

• Inverse propagator in momentum space (Green’s operator) is

D–1
µν(p) = (p2 – m2

A)ηµν + iκεµνρpρ

• For a massive excitation at rest (k = 0), the dynamical gauge masses are the propagator poles

detD–1(ω, k = 0) = 0 ⇒ ω2± = M2
±, M± =

√
m2

A +
κ2

4 ± κ

2

Paul Leask Solitons at Work 29/42



Screening structure

Dynamical gauge masses M± =
√

m2
A + κ2/4 ± κ/2

• M± are physical masses of propagating gauge excitations (topologically massive photons)
• They describe two physical propagating modes with different masses and helicities
• CS term assigns a handedness (chirality) to the gauge field, with helicities having differing masses
⇒ Breaks parity and time reversal (each reverses handedness), but combination PT restores it
• Parity breaking “splits” Bµ into two on-shell masses M±18

• These have associated length scales l± = 1/M±
• Paul–Khare19 identifies l± as penetration depths with l– giving rise to an energetically favorable vortex
• Consistency check: abelian Higgs limit limκ→0 M± = mA and limκ→0 l± = λ = 1/mA X

18R. D. Pisarski and S. Rao, Phys. Rev. D 32, 2081 (1985)
19S. K. Paul and A. Khare, Phys. Lett. B 174, 420 (1986)
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Screening structure

Static far-field asymptotics

• Alternatively: can also obtain static screening masses and penetration depths by considering static
long-range asymptotics

• Let us work in the unitary gauge ψ ∈ R and the Coulomb gauge ∂iAi = 0
• Linearize about ground state {ψ,Aµ} = {m + φ, 0+ aµ}
• Higgs field has mass mH =

√
V ′′(m) = m

√
λ and Proca mass is mA = qm

• Slight abuse of notation: B = εij∂iaj and Ei = –∂ia0
• Static energy, linearized about ground state, is

Elin =
1
2

∫
R2

d2x
[
φ
(
–∇2 + m2

H
)
φ
]
+

1
2

∫
R2

d2x
[
B a0

] (–∇2 + m2
A

)
–κ∇2

κ
(
–∇2 + m2

A

)[
B
a0

]
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Screening structure

Static far-field asymptotics
• To linear order, Gauss constraint and static Ginzburg–Landau equations reduce to(

–∇2 + m2
H
)
φ = 0,

(
–∇2 + m2

A
)

ai = κεij∂ja0,
(
–∇2 + m2

A
)

a0 = –κB

• Higgs-amplitude mode φ decouples giving a static Klein-Gordon equation
• Taking the curl of the linearized gauge field equation yields

(–∇2 + m2
A)B = κ∇2a0 (*)

• Applying the Laplace operator to the linearized Gauss’ law gives

(–∇2 + m2
A)∇

2a0 = –κ∇2B (**)

• Applying the operator (–∇2 + m2
A) to (*) and using relation (**), gives a scalar decoupled fourth order

equation for the magnetic field [(
–∇2 + m2

A
)2

+ κ2∇2
]

B = 0
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Screening structure

Static screening masses

• Magnetic field and electric field satisfy same linearized field equations, ∆κB = 0 and ∆κEi = 0, where

∆κ =
[(

–∇2 + m2
A
)2

+ κ2∇2
]
=

(
∇2 – m2

+
)(

∇2 – m2
–
)

• Takes same form as linearized field equation for OP in superfluids with fermionic imbalance20
• ∆κ can be factorized into complex-conjugate eigenmodes m± (static screening masses)21

m± =

√
m2

A –
κ2

4 ± i κ2
• These masses do not agree with our computation of the dynamical gauge masses M± ∈ R…

20M. Barkman, A. Samoilenka, T. Winyard, and E. Babaev, Phys. Rev. Res. 2, 043282 (2020)
21M. Stålhammar, D. Rudneva, T. H. Hansson, and F. Wilczek, Phys. Rev. B 109, 064514 (2024)
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Screening structure

Penetration depths: dynamical gauge or static screening?

• Dynamical gauge masses M± ∈ R, whereas static screening masses m± ∈ C, with

M± =
√

m2
A + κ2/4± κ/2, m± =

√
m2

A – κ2/4± iκ/2

• Why the discrepancy and which masses define the penetration depths?
• In both cases, the abelian Higgs limit is recovered limκ→0 m± = limκ→0 M± = mA and

limκ→0 λ± = limκ→0 l± = λ

• Dynamical gauge masses are the poles of the propagator in Minkowski space DM(ω, 0)
• Static screening masses are the poles of the propagator in Euclidean space DE (0, k)
• We must have analytic continuation between Minkowski and Euclidean formulations
⇒ Consistency condition ensuring that Euclidean and Minkowski propagators describe the same analytic

structure
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Screening structure

Penetration depths: static screening masses X

• Dynamical gauge masses M± ∈ R, whereas static screening masses m± ∈ C, with

M± =
√

m2
A + κ2/4± κ/2, m± =

√
m2

A – κ2/4± iκ/2

• To be self-consistent as a QFT they must be related by a Wick rotation p0 = ω 7→ iω
• This translates to an effective Wick rotation κ 7→ iκ
• Complex-conjugate static poles correspond to imaginary continuation of the real-time propagator poles to

Euclidean frequency axis
• In AH model, dynamical gauge masses are identical to static screening masses
• CS term breaks parity and this is no longer true
• Penetration depths (screening lengths) are related to static screening masses, not dynamical gauge masses
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Screening structure

Dynamical gauge (M±, l±) vs static screening (m±,λ±)
• M±: tell you how fast the gauge field oscillates in time → dynamical response
• l±: propagation length scales or Compton wavelengths
• m±: tell you how fast the fields decay in space → static screening
• λ±: spatial structure of static fields (e.g. vortex profiles)
• Static screening masses are

m± = α± iβ, α =
√

m2
A – κ2/4, β =

κ

2
⇒ Magnetic & electric fields share common penetration depth λgauge but differ by oscillation frequency 1/λosc

λgauge =
1
α
=

1√
m2

A – κ2/4
, λosc =

2π
β

=
4π
κ
.
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Long-range interactions

Long-range interactions

• Can determine long-range interactions following point-particle method22
• Done in two parts:

1. Add linear sources to linearized energy, such that solutions of field equations are exactly single-vortex far fields
2. Compute the interaction energy from the on-shell cross term in the linearization

• After a bit of work23, the interaction energy of a pair of separated vortex anyons is given by

Vint(R) ' 2π
[
|cB|2e–αR cos (βR – γ) – c2HK0(mHR)

]
• Standard Higgs contribution remains monotone attractive
• Gauge term becomes a damped oscillator with envelope e–αR/

√
R , decay rate α =

√
m2

A – κ2/4, and
oscillation frequency β = κ/2, alternating between attractive and repulsive behavior

22J. M. Speight, Phys. Rev. D 55, 3830 (1997)
23P. Leask, arXiv:2510.04830 [cond-mat.supr-con]

Paul Leask Solitons at Work 38/42

https://doi.org/10.1103/PhysRevD.55.3830
https://arxiv.org/abs/2510.04830


Long-range interactions

Long-range interactions

• Oscillatory attractive/repulsive behavior of gauge contribution leads to non-monotonic interactions
• If gauge term is dominant over Higgs term at long-range:

• Provides a repulsive force initially (R < π
κ + 2γ

κ )
• Switches to an attractive force at longer range (R > π

κ + 2γ
κ )

• Repeats this behavior in a decaying oscillatory fashion as the R increases
• Breaks usual vanilla type I/II dichotomy
⇒ Hybrid of type I & II superconductivity behavior
• Similar behavior arises in multiband superconductors, called type 1.5 superconductivity24,25
• Hybrid behavior there arises to due competing length scales with ξ1 < λ < ξ2
• Hybrid behavior here arises from the decaying oscillatory behavior of the gauge field

24E. Babaev and M. Speight, Phys. Rev. B 72, 180502 (2005)
25E. Babaev, J. Carlström, and M. Speight, Phys. Rev. Lett. 105, 067003 (2010)
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Long-range interactions

Abelian Higgs limit
• Consistency check, must recover AH model in the limit κ→ 0
• Decay rate becomes limκ→0 α = mA = qm and oscillatory behavior vanishes, limκ→0 β = 0
⇒ Magnetic penetration depth is recovered

lim
κ→0

λgauge =
1
α
=

1
mA

• Complex-conjugate screening masses tend to single real-valued Proca mass
lim
κ→0

m± = α = mA

• Also recover long-range interaction energy of AH model26,27

lim
κ→0

Vint(R) = 2π
[
c2BK0(mAR) – c2HK0(mHR)

]
26L. M. A. Bettencourt and R. J. Rivers, Phys. Rev. D 51, 1842 (1995)
27K. Fujikura, S. Li, and M. Yamaguchi, J. High Energ. Phys. 12, 115 (2023)
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Conclusion and further work

Conclusion

• Gauss’ law binds magnetic flux to electric charge ⇒ anyonic vortices
• CS term makes screening masses complex
• Electric and magnetic fields decay with common penetration depth but acquire oscillatory phase shift
• Breaks type-I/II dichotomy ⇒ new hybrid typology
• Vortex anyons form stable bound states with separated cores
⇒ Theoretical realization of hybrid superconducting behavior in an anyon superconductor
• Future directions include:

• Systematic study of vortex lattice phases28
• Role of the CS term in dynamical interactions of vortex anyons29
• Short-range interactions of vortex anyons30

28M. Speight and T. Winyard, J. Phys. A: Math. Theor. 58, 095203 (2025)
29D. Bazeia, J. G. F. Campos, and A. Mohammadi, J. High Energ. Phys. 12, 108 (2024)
30M. Speight and T. Winyard, Phys. Rev. D 112, 055024 (2025)

Paul Leask Solitons at Work 42/42

https://doi.org/10.1088/1751-8121/adb7a7
https://doi.org/10.1007/JHEP12(2024)108
https://doi.org/10.1103/2m3b-gr79

	Motivation
	Chern–Simons–Landau–Ginzburg theory
	Vortex anyons
	Hybrid superconducting typology
	Screening structure
	Long-range interactions
	Conclusion and further work

