

Anyon superconductivity in a Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect

Paul Leask, KTH Royal Institute of Technology
October 2025 — Solitons at Work

Table of Contents

Motivation

Chern–Simons–Landau–Ginzburg theory

Vortex anyons

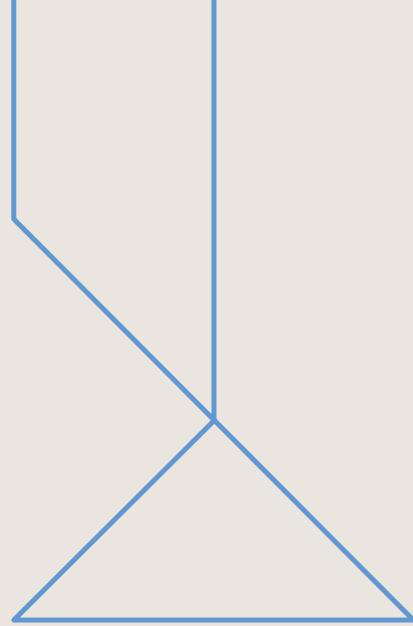
Hybrid superconducting typology

Screening structure

Long-range interactions

Conclusion and further work

Motivation



Motivation

- ZHK model provides an effective field theory for the fractional quantum Hall effect¹
- Describes the system as a condensate of anyons coupled to a Chern–Simons gauge field
- We extend that idea to a relativistic setting
 - ⇒ Vortices act as flux–charge composites with superconducting behavior²
- Previous studies introduce auxiliary neutral scalar field to make the model self-dual³
- Others consider a generalization with a scalar-field-dependent dielectric function⁴, or both⁵
- ⇒ BPS and non-interacting vortices
 - We explicitly do not do this and study **non-BPS** vortex anyons
 - We consider the Chern–Simons–Landau–Ginzburg, or Maxwell–Chern–Simons–Higgs, model

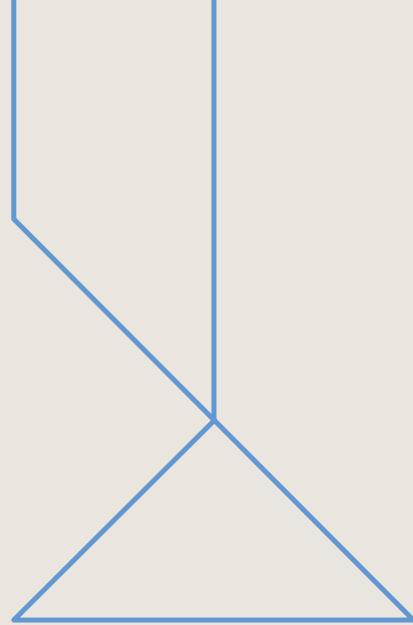
¹S. C. Zhang, T. H. Hansson, and S. Kivelson, *Phys. Rev. Lett.* **62**, 82 (1989)

²D.-H. Lee and M. P. A. Fisher, *Phys. Rev. Lett.* **63**, 903 (1989)

³G. V. Dunne and C. A. Trugenberger, *Rev. D* **43**, 1323 (1991)

⁴P. K. Ghosh, *Phys. Rev. D* **49**, 5458 (1994)

⁵J. Andrade, R. Casana, and E. da Hora, *Phys. Rev. D* **111**, 036019 (2025)



Chern–Simons–Landau–Ginzburg theory

Model setup and parameters

- Superconducting order parameter / condensate / Higgs field $\psi : \mathbb{R}^{2+1} \rightarrow \mathbb{C}$
- Abelian gauge field $\mathbf{A} = (A_0, \mathbf{A}) \in \mathbb{R}^{2+1}$
- Gauge covariant derivative $D_\mu = \partial_\mu + iqA_\mu$
- Gauge field strength $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$
- ⇒ Magnetic field $\mathbf{B} = F_{12}$ and electric field $E_i = F_{0i}$
- Minkowski spacetime \mathbb{R}^{2+1} , endowed with metric η and signature $(+--)$

CSLG theory

- CSLG theory is a topologically massive gauge theory that is Lorentz invariant
- The CSLG Lagrangian is^{6,7}

$$\mathcal{L} = \frac{1}{2} D_\mu \psi \overline{D^\mu \psi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - V(|\psi|) + \frac{\kappa}{4} \epsilon^{\alpha\beta\gamma} A_\alpha F_{\beta\gamma}$$

- First three terms correspond to the Ginzburg–Landau, or abelian Higgs, model
- Last term is the topological Chern–Simons term

$$\mathcal{L}_{CS} = \frac{\kappa}{4} \epsilon^{\alpha\beta\gamma} A_\alpha F_{\beta\gamma} = \frac{\kappa}{2} (A_0 B - \epsilon_{ij} A_i E_j)$$

- CS term breaks parity (P) and time reversal (T) explicitly, but preserves PT
- We are interested in the effect the CS term has on vortices

⁶T. Hansson, V. Oganesyan, and S. Sondhi, *Ann. Phys.* 313, 497 (2004)

⁷E. Fradkin, *Phys. Rev. B* 42, 570 (1990)

Gauss' law

- Static Lagrangian of the CSLG theory is

$$\mathcal{L}_{\text{static}} = \frac{1}{2}(\partial_i A_0)^2 + \frac{\kappa}{2}(A_0 B + \epsilon_{ij} A_i \partial_j A_0) + \frac{1}{2}q^2 A_0^2 |\psi|^2 - \left[\frac{1}{2} D_i \psi \overline{D_i \psi} + \frac{1}{2} B^2 + V(|\psi|) \right]$$

- Can simplify by an integration by parts

$$\int_{\mathbb{R}^2} d^2x \epsilon_{ij} A_i \partial_j A_0 = \int_{\mathbb{R}^2} d^2x A_0 B$$

- Hence, static Lagrangian can be expressed as

$$\mathcal{L}_{\text{static}} = \frac{1}{2}(\partial_i A_0)^2 + \kappa A_0 B + \frac{1}{2}q^2 A_0^2 |\psi|^2 - \left[\frac{1}{2} D_i \psi \overline{D_i \psi} + \frac{1}{2} B^2 + V(|\psi|) \right]$$

- Varying this w.r.t. A_0 reveals Gauss' law as an elliptic PDE

$$\frac{\delta \mathcal{L}_{\text{static}}}{\delta A_0} = 0 \quad \Rightarrow \quad \left(-\nabla^2 + q^2 |\psi|^2 \right) A_0 = -\kappa B$$

Maxwell charge

- Gauss' law enforces that electric charge and magnetic flux are not independent
- The electric field is $\mathbf{E} = -\nabla A_0 \neq \mathbf{0}$
- Compute electric charge density via Maxwell equation & Gauss law

$$(-\nabla^2 + q^2|\psi|^2) A_0 = -\kappa B \quad \Rightarrow \quad \rho_e = \nabla \cdot \mathbf{E} = -\nabla^2 A_0 = -\kappa B - q^2|\psi|^2 A_0$$

- Total electric charge is

$$Q_e = \int_{\mathbb{R}^2} d^2x \rho_e = -\kappa\Phi - q^2 \int_{\mathbb{R}^2} d^2x A_0 |\psi|^2, \quad \Phi = \int_{\mathbb{R}^2} d^2x B$$

- Localized static solutions: A_0 decays exponentially and $E_i \rightarrow 0$ at spatial infinity
 $\Rightarrow Q_e = 0$ for localized solutions, and

$$\int_{\mathbb{R}^2} d^2x q^2 A_0 |\psi|^2 = -\kappa\Phi$$

Flux-charge binding

- Condensate carries nontrivial internal $U(1)$ charge Q_m
- Associated Noether (super)current is

$$J_\mu = \frac{iq}{2}(\psi \partial_\mu \bar{\psi} - \bar{\psi} \partial_\mu \psi) + q^2 A_\mu |\psi|^2$$

- Corresponding Noether matter charge density

$$\rho_m = J_0 = q^2 A_0 |\psi|^2$$

- Magnetic flux Φ and Noether charge Q_m are bound together by⁸

$$\int_{\mathbb{R}^2} d^2x q^2 A_0 |\psi|^2 = -\kappa \Phi \quad \Rightarrow \quad Q_m = \int_{\mathbb{R}^2} d^2x \rho_m = -\kappa \Phi$$

⇒ Each vortex simultaneously carries a flux quantum Φ and a proportional electric charge $Q_m = -\kappa \Phi$

⁸S. Deser, R. Jackiw, and S. Templeton, *Ann. Phys.* 281, 409 (2000)

Flux-charge binding is topological

- The flux-charge binding mechanism is purely topological
- Arises from the Chern–Simons term and Gauss law, Maxwell term plays no part
- Consider the Chern–Simons–Higgs model⁹

$$\mathcal{L} = \frac{1}{2} D_\mu \psi \overline{D^\mu \psi} + \frac{\kappa}{4} \epsilon^{\alpha\beta\gamma} A_\alpha F_{\beta\gamma} - V(|\psi|)$$

- Gauss' law is algebraic
- Noether charge is still

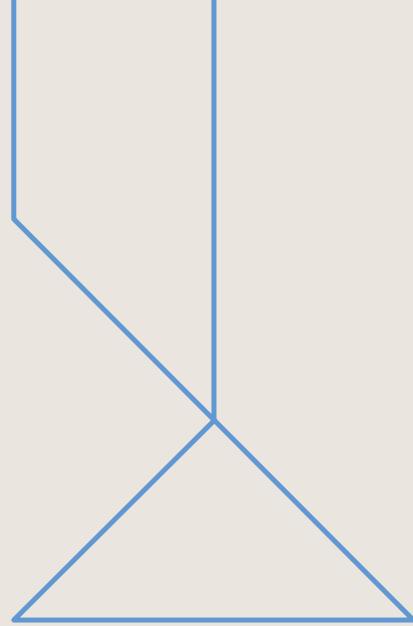
$$A_0 = -\frac{\kappa B}{q^2 |\psi|^2}$$

$$Q_m = \int_{\mathbb{R}^2} d^2x q^2 A_0 |\psi|^2 = -\kappa \int_{\mathbb{R}^2} d^2x B = -\kappa \Phi$$

- This is the flux–charge binding mechanism → purely topological, enforced by the CS term

⁹S. A. Parameswaran, S. A. Kivelson, E. H. Rezayi, S. H. Simon, S. L. Sondhi, and B. Z. Spivak, *Phys. Rev. B* 85, 241307 (2012)

Vortex anyons



Static energy

- The static energy of the CSLG theory is

$$\mathcal{E} = -\mathcal{L}_{\text{static}} = \frac{1}{2} D_i \psi \overline{D_i \psi} + \frac{1}{2} B^2 + V(|\psi|) - \frac{1}{2} (\partial_i A_0)^2 - \kappa A_0 B - \frac{1}{2} q^2 A_0^2 |\psi|^2$$

- At a first glance this appears not to be bounded from below
- Inner product of Gauss' law with the A_0 and integrating by parts gives

$$-\int_{\mathbb{R}^2} d^2x \kappa A_0 B = \int_{\mathbb{R}^2} d^2x \left[-A_0 \partial_i \partial_i A_0 + q^2 |\psi|^2 A_0^2 \right] = \int_{\mathbb{R}^2} d^2x \left[(\partial_i A_0)^2 + q^2 |\psi|^2 A_0^2 \right]$$

- Using this relation yields an energy that is positive (semi-)definite and bounded below

$$E = \int_{\mathbb{R}^2} d^2x \left\{ \frac{1}{2} |\mathbf{D}\psi|^2 + \frac{1}{2} B^2 + V(|\psi|) + \frac{1}{2} |\nabla A_0|^2 + \frac{1}{2} q^2 A_0^2 |\psi|^2 \right\}$$

Non-local \rightarrow constrained local

- Static vortex anyons are minimizers of the static energy

$$E = \int_{\mathbb{R}^2} d^2x \left\{ \frac{1}{2} |\mathbf{D}\psi|^2 + \frac{1}{2} B^2 + V(|\psi|) + \frac{1}{2} |\nabla A_0|^2 + \frac{1}{2} q^2 A_0^2 |\psi|^2 \right\}$$

subject to Gauss' law

$$(-\nabla^2 + q^2 |\psi|^2) A_0 = -\kappa B$$

- As the energy is bounded below \Rightarrow amenable to minimization methods
- This is inherently a non-local problem, but has been reformulated as a constrained minimization problem
- Challenges of this type are not unique to the CSLG framework
- They arise more broadly across both condensed matter and high energy physics

Non-local problems in high energy & condensed matter physics

- Nuclear skyrmions stabilized by ω -mesons^{10,11} (Skyrme field - $\varphi \in \text{SU}(2)$, potential - $\omega \in \mathbb{R}$):

$$\mathcal{E} = \frac{1}{8} |\mathbf{d}\varphi|^2 + \frac{1}{4} V(\varphi) + \frac{1}{2} |\mathbf{d}\omega|^2 + \frac{1}{2} \omega^2, \quad (-\nabla^2 + 1) \omega = -c_\omega \mathcal{B}_0$$

- Demagnetization in chiral magnets¹² (Magnetization - $\mathbf{n} \in S^2$, magnetic potential - $\psi \in \mathbb{R}$):

$$\mathcal{E} = \frac{J}{2} |\mathbf{d}\mathbf{n}|^2 + \mathcal{D} \sum_{i=1}^3 \mathbf{d}_i \cdot (\mathbf{n} \times \partial_i \mathbf{n}) + V(\mathbf{n}) + \frac{1}{2\mu_0} |\mathbf{d}\psi|^2, \quad -\nabla^2 \psi = -\mu_0 M_s [\nabla \cdot \mathbf{n}]$$

- Flexoelectric self-polarization in chiral liquid crystals¹³ (Director - $\mathbf{n} \in \mathbb{R}P^2$, electric potential - $\varphi \in \mathbb{R}$):

$$\mathcal{E} = \frac{K}{2} |\mathbf{d}\mathbf{n}|^2 + Kq_0 [\mathbf{n} \cdot (\nabla \times \mathbf{n})] + V(\mathbf{n}) + \frac{\epsilon_0}{2} |\mathbf{d}\varphi|^2, \quad -\nabla^2 \varphi = -\frac{1}{\epsilon_0} [\nabla \cdot \mathbf{P}_f(\mathbf{n})]$$

¹⁰S. B. Gudnason and M. Speight, *J. High Energ. Phys.* 07, 184 (2020)

¹¹D. Harland, P. Leask, and M. Speight, *J. High Energ. Phys.* 06, 116 (2024)

¹²P. Leask and M. Speight, [arXiv:2504.17772 \[cond-mat.mes-hall\]](https://arxiv.org/abs/2504.17772)

¹³P. Leask, *Phys. Rev. Res.* 7, 043001 (2025)

Constrained Newton flow

- Problems of this nature are well-suited to the **constrained Newton flow** method¹⁴
- Static vortex anyons are critical points of the static energy
- ⇒ Solutions of static Ginzburg–Landau equations

$$D_i D_i \psi = 2 \frac{\partial V}{\partial \bar{\psi}} - q^2 A_0^2 \psi, \quad \partial_j (\partial_j A_i - \partial_i A_j) = J_i - \kappa \epsilon_{ij} \partial_j A_0$$

- Must also satisfy Gauss' law $(-\partial_i \partial_i + q^2 |\psi|^2) A_0 = -\kappa B$
- We reformulate Gauss constraint as an unconstrained optimization problem

$$\min_{\psi \text{ const.}} F(A_0), \quad F(A_0) = \int_{\mathbb{R}^2} d^2x \left\{ \frac{1}{2} |\nabla A_0|^2 + \frac{1}{2} q^2 |\psi|^2 A_0^2 + \kappa B A_0 \right\}$$

- Solve using non-linear conjugate gradient descent with line search strategy
- Conjugate step-size updated using Polak–Ribièrè–Polyak method

¹⁴The CUDA code for this method in the CSLG theory is available on my public github repository <https://github.com/PaulLeask/cuSuperAnyon>

Constrained Newton flow

- We now solve the static GL equations, assuming A_0 satisfies the Gauss constraint
- ⇒ Arrested Newton flow¹⁵: Accelerated gradient descent method with flow arresting criteria
- Formulate the minimization as a second order dynamical problem and solve the second order system

$$\frac{d^2\psi}{dt^2} = \frac{1}{2}D_iD_i\psi - \frac{\partial V}{\partial\bar{\psi}} + \frac{1}{2}q^2A_0^2\psi, \quad \frac{d^2A_i}{dt^2} = \partial_j(\partial_jA_i - \partial_iA_j) - J_i + \kappa\epsilon_{ij}\partial_jA_0,$$

- Can be reduced to a coupled first order system ⇒ solve using RK4
- As initial configuration, we use an extended Abrikosov–Nielsen–Olesen (ANO) ansatz^{16,17}

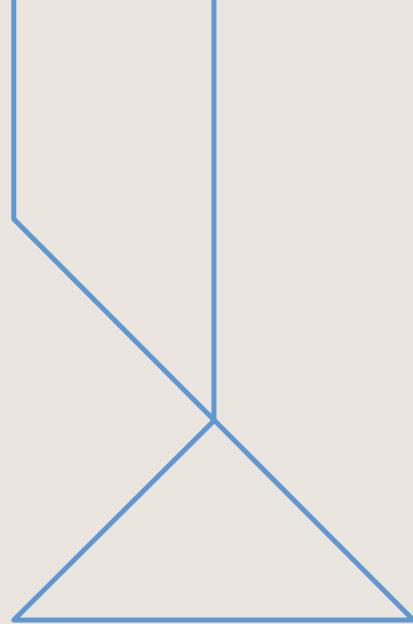
$$\psi = m\phi(r)e^{iN\theta}, \quad \mathbf{A} = \frac{Na(r)}{qr}(\sin\theta, -\cos\theta), \quad A_0 = -\frac{\kappa B}{q^2m^2}$$

¹⁵S. B. Gudnason and J. M. Speight, *J. High Energ. Phys.* 07, 184 (2020)

¹⁶A. Abrikosov, *J. Phys. Chem. Solids.* 2, 199 (1957)

¹⁷H. B. Nielsen and P. Olesen, *Nucl. Phys. B* 61, 45 (1973)

Hybrid superconducting typology



Abelian Higgs model

- Consider AH model with the conventional quartic Higgs potential

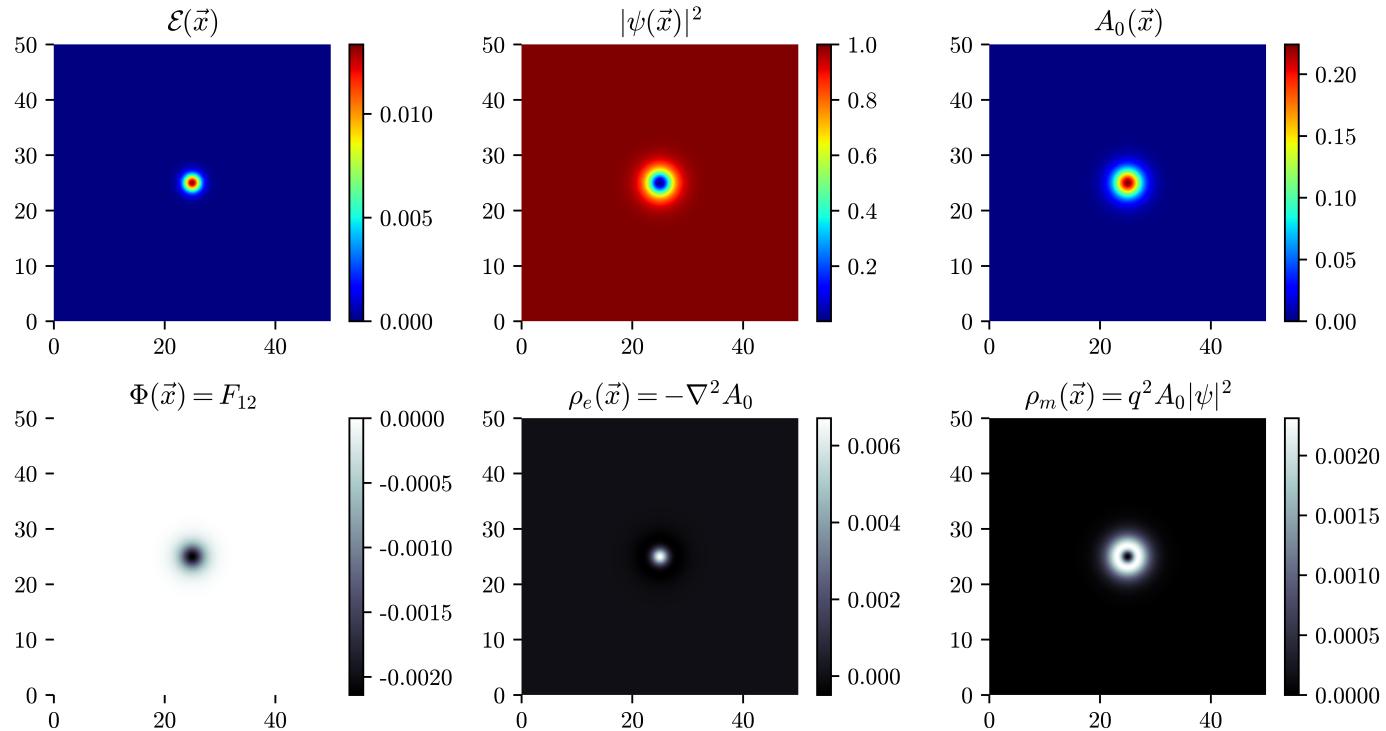
$$\mathcal{L} = \frac{1}{2} D_\mu \psi \overline{D^\mu \psi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - V(|\psi|), \quad V(|\psi|) = \frac{\lambda}{8} (m^2 - |\psi|^2)^2$$

- Higgs mass $m_H = \sqrt{\lambda}m$, coherence length $\xi_s = 1/m_H$
- Proca mass $m_A = qm$, magnetic penetration depth $\xi_m = 1/m_A$
- GL parameter dictating superconducting typology is $\kappa_{\text{GL}} = \xi_m/\xi_s = \sqrt{\lambda}/q$:
 - $\sqrt{\lambda} < q$: Type-I, attractive intervortex force
 - $\sqrt{\lambda} > q$: Type-II, repulsive intervortex force
 - $\sqrt{\lambda} = q$: BPS, no intervortex force

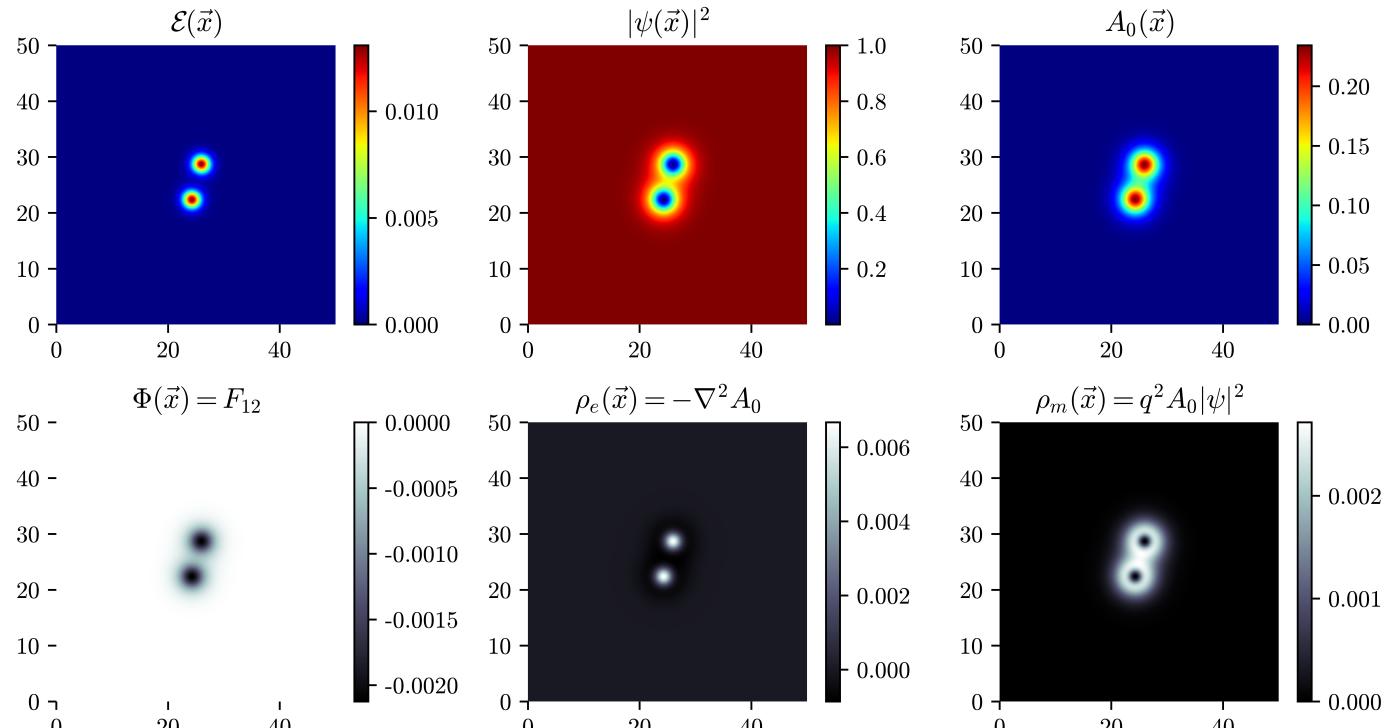
Anyon bound states

- CSLG theory: type-I/II dichotomy is broken
- Each vortex carries a magnetic flux + proportional Noether electric charge
- ⇒ Induces electrostatic repulsion between vortices
- In the typical type-II repulsive regime ($\kappa > 1$), the repulsive interaction force is now stronger
- At critical coupling $\lambda = 1$, vortices now repel one another
- In the type-I attractive regime ($\lambda < 1$), κ can force vortex cores (zeros of ψ) to split
- If κ is large, the interaction force becomes entirely repulsive
- For relatively small κ , vortex cores split but remain bounded

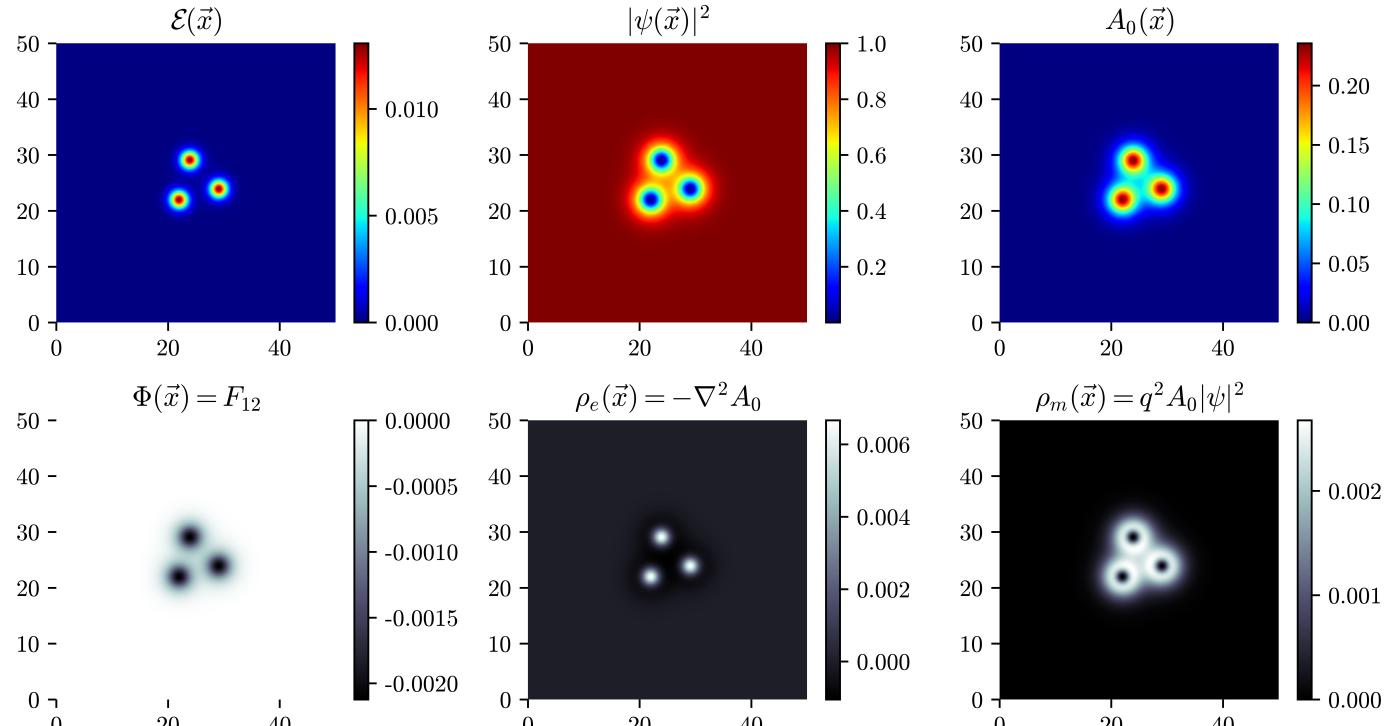
$E/N=2.9063, N=-1.0001, Q_m/(-\kappa\Phi_0)=-1.0006, Q_e=0.0002$ ($\lambda=0.5, m=1.0, \kappa=0.50$)



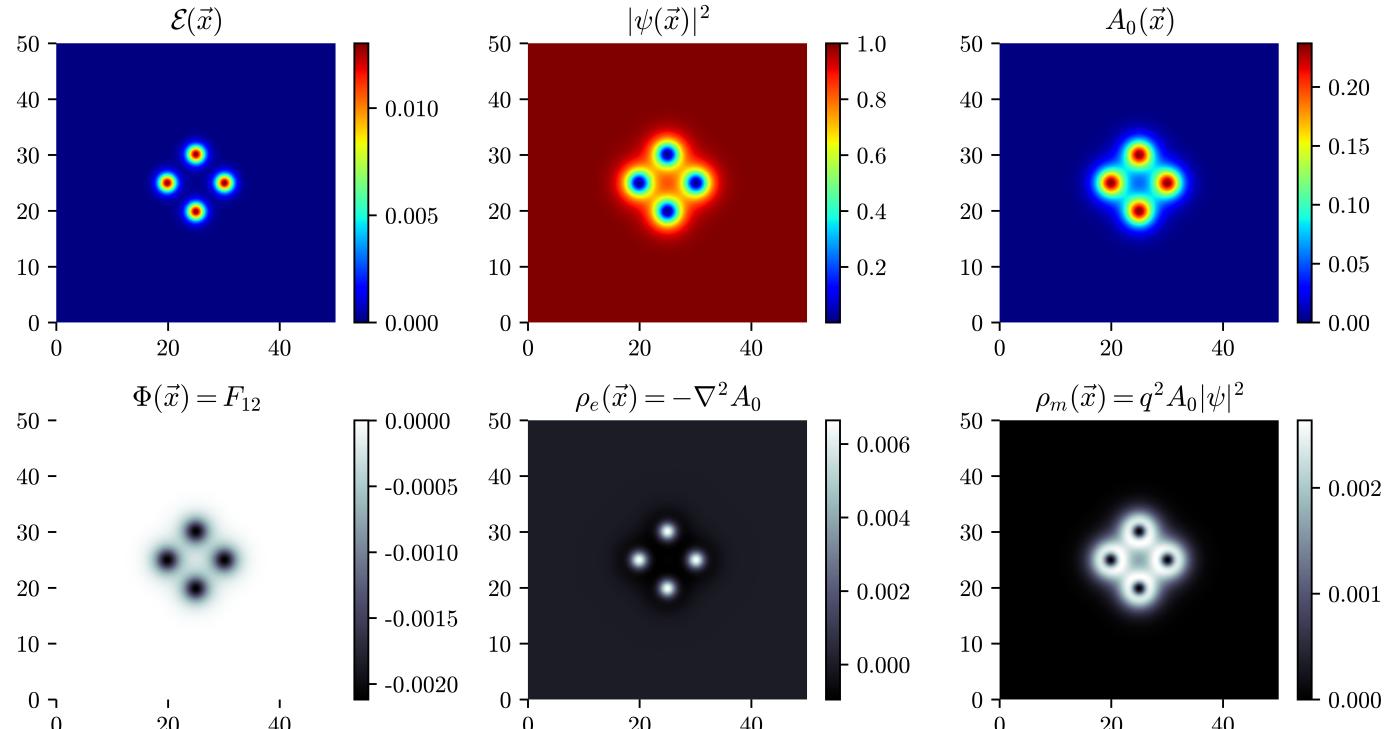
$E/N=2.9055, N=-1.9999, Q_m/(-\kappa\Phi_0)=-1.9999, Q_e=0.0001$ ($\lambda=0.5, m=1.0, \kappa=0.50$)



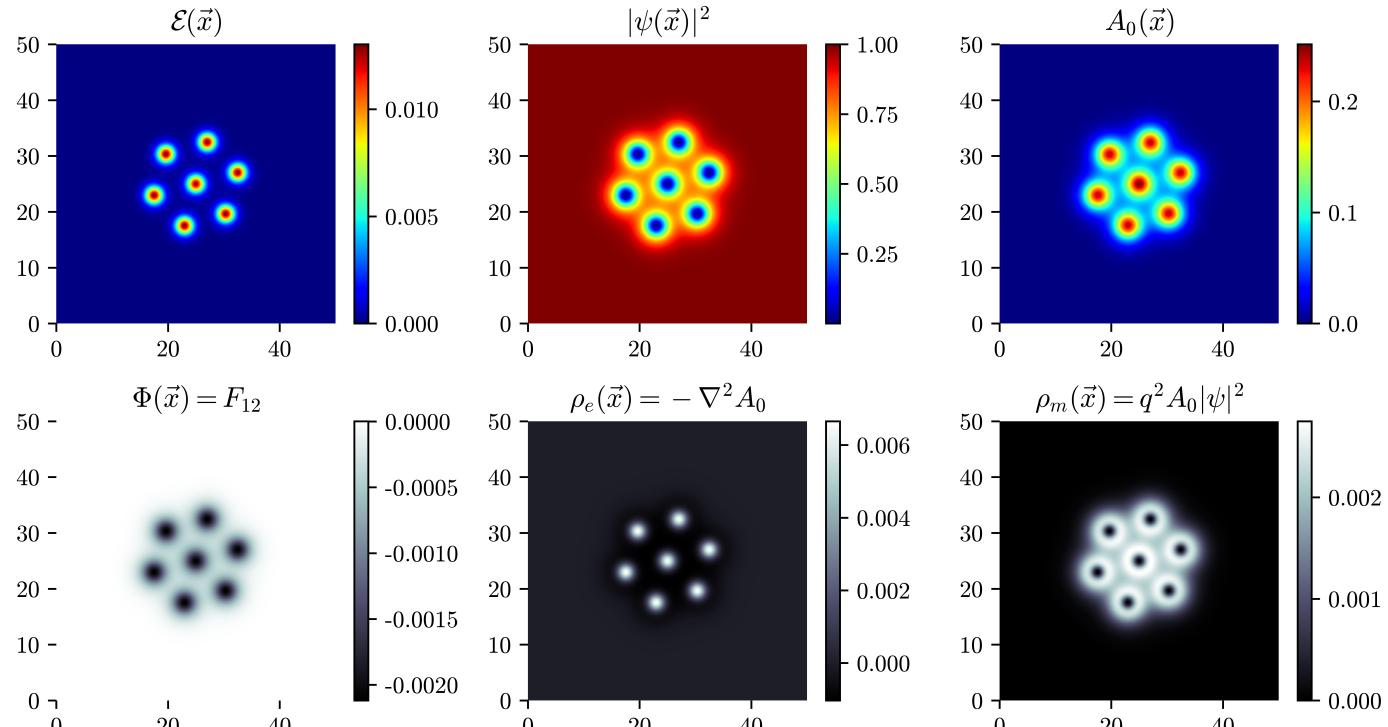
$E/N=2.9047, N=-2.9997, Q_m/(-\kappa\Phi_0)=-2.9999, Q_e=0.0001$ ($\lambda=0.5, m=1.0, \kappa=0.50$)



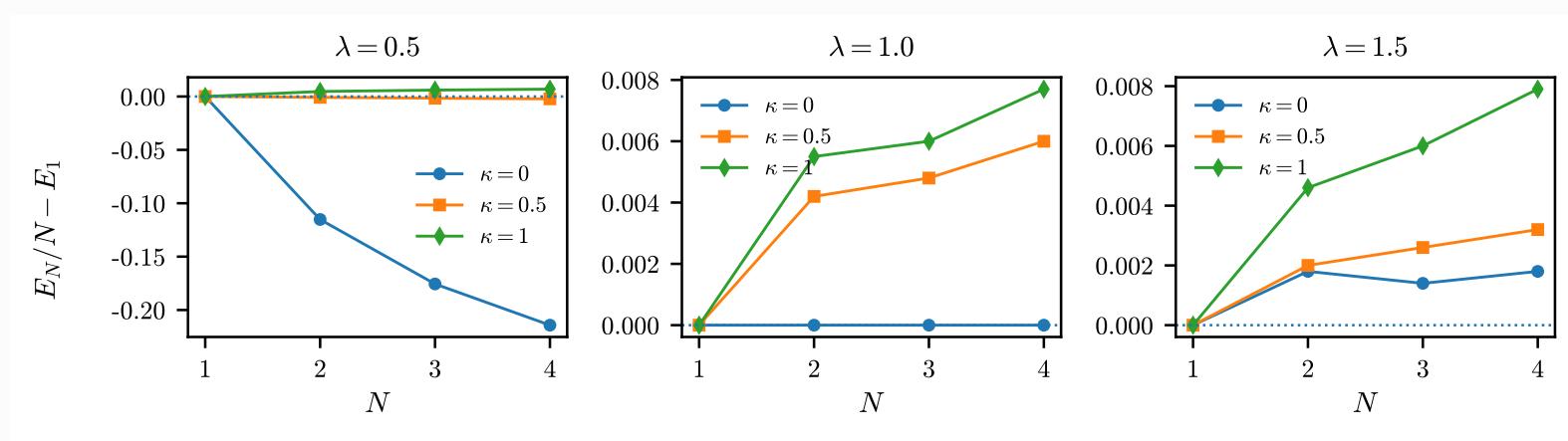
$E/N=2.9041, N=-3.9997, Q_m/(-\kappa\Phi_0)=-3.9998, Q_e=0.0002$ ($\lambda=0.5, m=1.0, \kappa=0.50$)



$E/N=2.9036, N=-6.9995, Q_m/(-\kappa\Phi_0)=-6.9994, Q_e=0.0003$ ($\lambda=0.5, m=1.0, \kappa=0.50$)



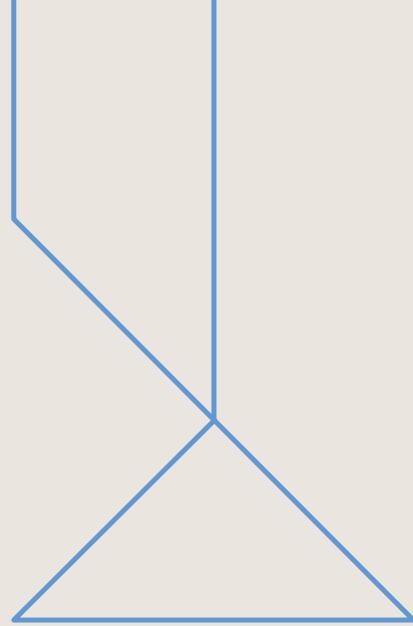
Binding energies



Hybrid superconductivity

- Consider the type-I regime ($\lambda < 1$) with κ large enough to cause core splitting
- Binding energy remains negative and interaction energy is non-monotonic
- ⇒ Bound stable multi-vortex anyon states
- ⇒ Hybridization of type I/II superconductivity behavior
- Look to understand long-range interactions for clues
- Must first consider the static screening structure and penetration depths

Screening structure



Dynamical gauge masses

- Let us focus on the gauge field by considering the abelian Maxwell–Chern–Simons Lagrangian

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{\kappa}{4}\epsilon^{\mu\nu\rho}A_\mu F_{\nu\rho} + \frac{1}{2}m_A^2 A_\mu A^\mu$$

- $m_A = qm$ is the usual Higgs (Proca) mass from symmetry breaking
- Equation of motion for A_μ (in the Lorenz gauge $\partial_\mu A^\mu = 0$) after Fourier transforming $\partial_\mu \mapsto ip_\mu$ is

$$\left[(p^2 - m_A^2)\eta_{\mu\nu} + i\kappa\epsilon_{\mu\nu\rho}p^\rho \right] A^\nu = 0, \quad p = (\omega, \mathbf{k})$$

- Inverse propagator in momentum space (Green's operator) is

$$\mathcal{D}_{\mu\nu}^{-1}(p) = (p^2 - m_A^2)\eta_{\mu\nu} + i\kappa\epsilon_{\mu\nu\rho}p^\rho$$

- For a massive excitation at rest ($\mathbf{k} = \mathbf{0}$), the dynamical gauge masses are the propagator poles

$$\det \mathcal{D}^{-1}(\omega, \mathbf{k} = \mathbf{0}) = 0 \quad \Rightarrow \quad \omega_\pm^2 = M_\pm^2, \quad M_\pm = \sqrt{m_A^2 + \frac{\kappa^2}{4}} \pm \frac{\kappa}{2}$$

$$\text{Dynamical gauge masses } M_{\pm} = \sqrt{m_A^2 + \kappa^2/4} \pm \kappa/2$$

- M_{\pm} are physical masses of propagating gauge excitations (topologically massive photons)
- They describe two physical propagating modes with different masses and helicities
- CS term assigns a handedness (chirality) to the gauge field, with helicities having differing masses
- ⇒ Breaks parity and time reversal (each reverses handedness), but combination PT restores it
- Parity breaking “splits” B^{μ} into two on-shell masses M_{\pm} ¹⁸
- These have associated length scales $l_{\pm} = 1/M_{\pm}$
- Paul–Khare¹⁹ identifies l_{\pm} as penetration depths with L giving rise to an energetically favorable vortex
- Consistency check: abelian Higgs limit $\lim_{\kappa \rightarrow 0} M_{\pm} = m_A$ and $\lim_{\kappa \rightarrow 0} l_{\pm} = \lambda = 1/m_A$ ✓

¹⁸R. D. Pisarski and S. Rao, *Phys. Rev. D* 32, 2081 (1985)

¹⁹S. K. Paul and A. Khare, *Phys. Lett. B* 174, 420 (1986)

Static far-field asymptotics

- Alternatively: can also obtain static screening masses and penetration depths by considering static long-range asymptotics
- Let us work in the unitary gauge $\psi \in \mathbb{R}$ and the Coulomb gauge $\partial_i A_i = 0$
- Linearize about ground state $\{\psi, A_\mu\} = \{m + \phi, 0 + a_\mu\}$
- Higgs field has mass $m_H = \sqrt{V''(m)} = m\sqrt{\lambda}$ and Proca mass is $m_A = qm$
- Slight abuse of notation: $B = \epsilon_{ij}\partial_i a_j$ and $E_i = -\partial_i a_0$
- Static energy, linearized about ground state, is

$$E_{\text{lin}} = \frac{1}{2} \int_{\mathbb{R}^2} d^2x \left[\phi \left(-\nabla^2 + m_H^2 \right) \phi \right] + \frac{1}{2} \int_{\mathbb{R}^2} d^2x [B \ a_0] \begin{bmatrix} (-\nabla^2 + m_A^2) & -\kappa \nabla^2 \\ \kappa & (-\nabla^2 + m_A^2) \end{bmatrix} \begin{bmatrix} B \\ a_0 \end{bmatrix}$$

Static far-field asymptotics

- To linear order, Gauss constraint and static Ginzburg–Landau equations reduce to

$$(-\nabla^2 + m_H^2) \phi = 0, \quad (-\nabla^2 + m_A^2) a_i = \kappa \epsilon_{ij} \partial_j a_0, \quad (-\nabla^2 + m_A^2) a_0 = -\kappa B$$

- Higgs-amplitude mode ϕ decouples giving a static Klein-Gordon equation
- Taking the curl of the linearized gauge field equation yields

$$(-\nabla^2 + m_A^2) B = \kappa \nabla^2 a_0 \tag{*}$$

- Applying the Laplace operator to the linearized Gauss' law gives

$$(-\nabla^2 + m_A^2) \nabla^2 a_0 = -\kappa \nabla^2 B \tag{**}$$

- Applying the operator $(-\nabla^2 + m_A^2)$ to $(*)$ and using relation $(**)$, gives a scalar decoupled fourth order equation for the magnetic field

$$\left[(-\nabla^2 + m_A^2)^2 + \kappa^2 \nabla^2 \right] B = 0$$

Static screening masses

- Magnetic field and electric field satisfy same linearized field equations, $\Delta_\kappa B = 0$ and $\Delta_\kappa E_i = 0$, where

$$\Delta_\kappa = \left[(-\nabla^2 + m_A^2)^2 + \kappa^2 \nabla^2 \right] = (\nabla^2 - m_+^2)(\nabla^2 - m_-^2)$$

- Takes same form as linearized field equation for OP in superfluids with fermionic imbalance²⁰
- Δ_κ can be factorized into **complex**-conjugate eigenmodes m_\pm (static screening masses)²¹

$$m_\pm = \sqrt{m_A^2 - \frac{\kappa^2}{4}} \pm i \frac{\kappa}{2}$$

- These masses do not agree with our computation of the dynamical gauge masses $M_\pm \in \mathbb{R}$...

²⁰M. Barkman, A. Samoilenga, T. Winyard, and E. Babaev, *Phys. Rev. Res.* **2**, 043282 (2020)

²¹M. Stålhammar, D. Rudneva, T. H. Hansson, and F. Wilczek, *Phys. Rev. B* **109**, 064514 (2024)

Penetration depths: dynamical gauge or static screening?

- Dynamical gauge masses $M_{\pm} \in \mathbb{R}$, whereas static screening masses $m_{\pm} \in \mathbb{C}$, with

$$M_{\pm} = \sqrt{m_A^2 + \kappa^2/4} \pm \kappa/2, \quad m_{\pm} = \sqrt{m_A^2 - \kappa^2/4} \pm i\kappa/2$$

- Why the discrepancy and which masses define the penetration depths?
- In both cases, the abelian Higgs limit is recovered $\lim_{\kappa \rightarrow 0} m_{\pm} = \lim_{\kappa \rightarrow 0} M_{\pm} = m_A$ and $\lim_{\kappa \rightarrow 0} \lambda_{\pm} = \lim_{\kappa \rightarrow 0} l_{\pm} = \lambda$
- **Dynamical gauge** masses are the poles of the propagator in **Minkowski** space $D_M(\omega, \mathbf{0})$
- **Static screening** masses are the poles of the propagator in **Euclidean** space $D_E(0, \mathbf{k})$
- We must have analytic continuation between Minkowski and Euclidean formulations

⇒ Consistency condition ensuring that Euclidean and Minkowski propagators describe the same analytic structure

Penetration depths: static screening masses ✓

- Dynamical gauge masses $M_{\pm} \in \mathbb{R}$, whereas static screening masses $m_{\pm} \in \mathbb{C}$, with

$$M_{\pm} = \sqrt{m_A^2 + \kappa^2/4} \pm \kappa/2, \quad m_{\pm} = \sqrt{m_A^2 - \kappa^2/4} \pm i\kappa/2$$

- To be self-consistent as a QFT they must be related by a **Wick rotation** $p^0 = \omega \mapsto i\omega$
- This translates to an **effective** Wick rotation $\kappa \mapsto i\kappa$
- Complex-conjugate static poles correspond to imaginary continuation of the real-time propagator poles to Euclidean frequency axis
- In AH model, dynamical gauge masses are identical to static screening masses
- CS term breaks parity and this is no longer true
- Penetration depths (screening lengths) are related to static screening masses, not dynamical gauge masses

Dynamical gauge (M_{\pm}, l_{\pm}) vs static screening (m_{\pm}, λ_{\pm})

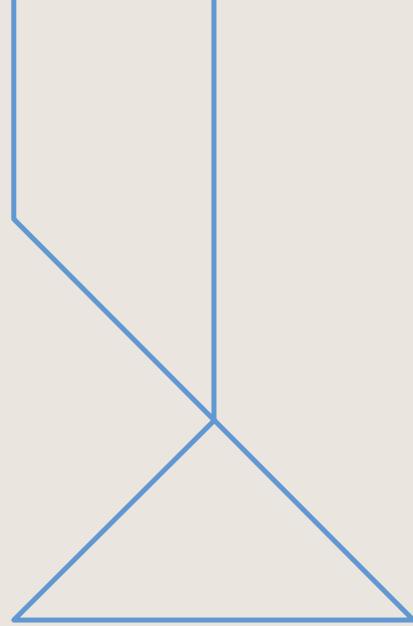
- M_{\pm} : tell you how fast the gauge field oscillates in time → *dynamical response*
- l_{\pm} : propagation length scales or Compton wavelengths
- m_{\pm} : tell you how fast the fields decay in space → *static screening*
- λ_{\pm} : spatial structure of static fields (e.g. vortex profiles)
- Static screening masses are

$$m_{\pm} = \alpha \pm i\beta, \quad \alpha = \sqrt{m_A^2 - \kappa^2/4}, \quad \beta = \frac{\kappa}{2}$$

⇒ Magnetic & electric fields share common penetration depth λ_{gauge} but differ by oscillation frequency $1/\lambda_{\text{osc}}$

$$\lambda_{\text{gauge}} = \frac{1}{\alpha} = \frac{1}{\sqrt{m_A^2 - \kappa^2/4}}, \quad \lambda_{\text{osc}} = \frac{2\pi}{\beta} = \frac{4\pi}{\kappa}.$$

Long-range interactions



Long-range interactions

- Can determine long-range interactions following point-particle method²²
- Done in two parts:
 1. Add linear sources to linearized energy, such that solutions of field equations are exactly single-vortex far fields
 2. Compute the interaction energy from the on-shell cross term in the linearization
- After a bit of work²³, the interaction energy of a pair of separated vortex anyons is given by

$$V_{\text{int}}(R) \simeq 2\pi \left[|c_B|^2 e^{-\alpha R} \cos(\beta R - \gamma) - c_H^2 K_0(m_H R) \right]$$

- Standard Higgs contribution remains monotone attractive
- Gauge term becomes a damped oscillator with envelope $e^{-\alpha R}/\sqrt{R}$, decay rate $\alpha = \sqrt{m_A^2 - \kappa^2/4}$, and oscillation frequency $\beta = \kappa/2$, alternating between attractive and repulsive behavior

²²J. M. Speight, *Phys. Rev. D* 55, 3830 (1997)

²³P. Leask, [arXiv:2510.04830 \[cond-mat.supr-con\]](https://arxiv.org/abs/2510.04830)

Long-range interactions

- Oscillatory attractive/repulsive behavior of gauge contribution leads to non-monotonic interactions
- If gauge term is dominant over Higgs term at long-range:
 - Provides a repulsive force initially ($R < \frac{\pi}{\kappa} + \frac{2\gamma}{\kappa}$)
 - Switches to an attractive force at longer range ($R > \frac{\pi}{\kappa} + \frac{2\gamma}{\kappa}$)
 - Repeats this behavior in a decaying oscillatory fashion as the R increases
- Breaks usual vanilla type I/II dichotomy
- ⇒ Hybrid of type I & II superconductivity behavior
- Similar behavior arises in multiband superconductors, called type 1.5 superconductivity^{24,25}
- Hybrid behavior there arises due to competing length scales with $\xi_1 < \lambda < \xi_2$
- Hybrid behavior here arises from the decaying oscillatory behavior of the gauge field

²⁴E. Babaev and M. Speight, *Phys. Rev. B* 72, 180502 (2005)

²⁵E. Babaev, J. Carlström, and M. Speight, *Phys. Rev. Lett.* 105, 067003 (2010)

Abelian Higgs limit

- Consistency check, must recover AH model in the limit $\kappa \rightarrow 0$
- Decay rate becomes $\lim_{\kappa \rightarrow 0} \alpha = m_A = qm$ and oscillatory behavior vanishes, $\lim_{\kappa \rightarrow 0} \beta = 0$
- ⇒ Magnetic penetration depth is recovered

$$\lim_{\kappa \rightarrow 0} \lambda_{\text{gauge}} = \frac{1}{\alpha} = \frac{1}{m_A}$$

- Complex-conjugate screening masses tend to single real-valued Proca mass

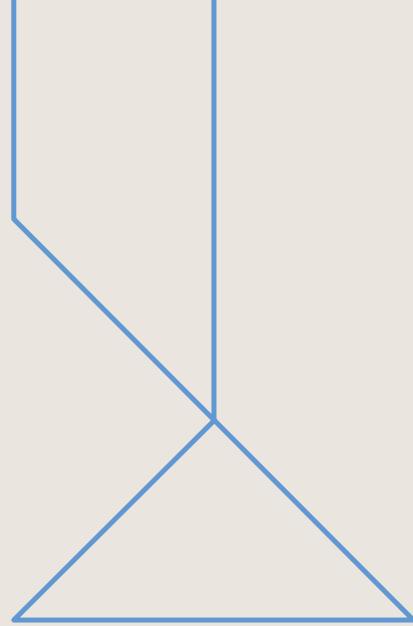
$$\lim_{\kappa \rightarrow 0} m_{\pm} = \alpha = m_A$$

- Also recover long-range interaction energy of AH model^{26,27}

$$\lim_{\kappa \rightarrow 0} V_{\text{int}}(R) = 2\pi \left[c_B^2 K_0(m_A R) - c_H^2 K_0(m_H R) \right]$$

²⁶L. M. A. Bettencourt and R. J. Rivers, *Phys. Rev. D* 51, 1842 (1995)

²⁷K. Fujikura, S. Li, and M. Yamaguchi, *J. High Energ. Phys.* 12, 115 (2023)



Conclusion and further work

Conclusion

- Gauss' law binds magnetic flux to electric charge \Rightarrow anyonic vortices
- CS term makes screening masses complex
- Electric and magnetic fields decay with common penetration depth but acquire oscillatory phase shift
- Breaks type-I/II dichotomy \Rightarrow new hybrid typology
- Vortex anyons form stable bound states with separated cores

\Rightarrow Theoretical realization of hybrid superconducting behavior in an anyon superconductor

- Future directions include:
 - Systematic study of vortex lattice phases²⁸
 - Role of the CS term in dynamical interactions of vortex anyons²⁹
 - Short-range interactions of vortex anyons³⁰

²⁸M. Speight and T. Winyard, *J. Phys. A: Math. Theor.* 58, 095203 (2025)

²⁹D. Bazeia, J. G. F. Campos, and A. Mohammadi, *J. High Energ. Phys.* 12, 108 (2024)

³⁰M. Speight and T. Winyard, *Phys. Rev. D* 112, 055024 (2025)