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Motivation

e /HK model provides an effective field theory for the fractional quantum Hall effect!

® Describes the system as a condensate of anyons coupled to a Chern—Simons gauge field

e \We extend that idea to a relativistic setting
= Vortices act as flux—charge composites with superconducting behavior?

® Previous studies introduce auxiliary neutral scalar field to make the model self-dual®

e Others consider a generalization with a scalar-field-dependent dielectric function®, or both®
= BPS and non-interacting vortices

e We explicitly do not do this and study non-BPS vortex anyons

e \We consider the Chern—-Simons—Landau—Ginzburg, or Maxwell-Chern—Simons—Higgs, model

15 c. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989)
2D-H. Lee and M. P. A. Fisher, Phys. Rev. Lett. 63, 903 (1989)

3G. V. Dunne and C. A. Trugenberger, Rev. D 43, 1323 (1991)

4P. K. Ghosh, Phys. Rev. D 49, 5458 (1994)

5). Andrade, R. Casana, and E. da Hora, Phys. Rev. D 111, 036019 (2025)


https://doi.org/10.1103/PhysRevLett.62.82
https://doi.org/10.1103/PhysRevLett.63.903
https://doi.org/10.1103/PhysRevD.43.1323
https://doi.org/10.1103/PhysRevD.49.5458
https://doi.org/10.1103/PhysRevD.111.036019
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Model setup and parameters

e Superconducting order parameter / condensate / Higgs field ¢ : R2T1 — C
e Abelian gauge field A = (A, A) € R?*1
® Gauge covariant derivative D), = 0, + igA,
® Gauge field strength f,, = J,A, -0, A,
= Magnetic field B = F15 and electric field E; = Fp;
e Minkowski spacetime R2T1, endowed with metric 7 and signature (+ —-)

Paul Leask Solitons at Work 6/42
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CSLG theory

CSLG theory is a topologically massive gauge theory that is Lorentz invariant
The CSLG Lagrangian is®’ | |
—_ R A
L = 5 DD = S FH Fuy = V([9]) + 3¢V AaFg,

First three terms correspond to the Ginzburg—Landau, or abelian Higgs, model

Last term is the topological Chern—Simons term

K K
Leg = Ze(wW\aFﬁ7 = > (AoB-ejAiE)

CS term breaks parity (P) and time reversal (T) explicitly, but preserves PT
® \We are interested in the effect the CS term has on vortices

5T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys. 313, 497 (2004)

E. Fradkin, Phys. Rev. B 42, 570 (1990)
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https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1103/PhysRevB.42.570

f}g};ﬁ% Chern-Simons—Landau—Ginzburg theory
Bt
7
Gauss' law

e Static Lagrangian of the CSLG theory is
1 2) R 1 D A2 2 1 —— 1 2
Lstatic = 5(0A0)° + 5 (ApB + €jjAid;Ag) + 54 Aolv|“ - DD + 5B% + V()
e Can simplify by an integration by parts

2 2
iAj0iAg = ApB
/de XGU 18J 0 /R2d 0

® Hence, static Lagrangian can be expressed as

1 . — 1
Lastc = 5 OiA) + KAoB + A3 |2 - [zDiwDiw +5B%+ vuwn}
e Varying this w.r.t. Ap reveals Gauss' law as an elliptic PDE

5£static

5A
Paul Leask Solitons at Work 8/42
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Maxwell charge

® Gauss' law enforces that electric charge and magnetic flux are not independent
® The electric field is E = -V Ay # 0
e Compute electric charge density via Maxwell equation & Gauss law

(‘V2+q2|¢|2)Ao=—ﬁB = pe=V-E=-V2Ay=-rB-q°|¢|*Ag

e Total electric charge is

Qe=/ d2xpe=—/<;d>—q2/ d°x Ag |2, q>=/ d’xB
R2 R2 R2

® |ocalized static solutions: Aj decays exponentially and E; — 0 at spatial infinity
= Qe = 0 for localized solutions, and

|, Ex ol = o

Paul Leask Solitons at Work
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Flux-charge binding

e Condensate carries nontrivial internal U(1) charge Qn

Associated Noether (super)current is

Iq - -
Ju = S @O =0 + ¢ Ay ||
e Corresponding Noether matter charge density

pm = Jo = ¢*Ag|¥|?

Magnetic flux ® and Noether charge @, are bound together by8

/dezxqz/\ohﬂz = —k® = Qm = /R2d2xpm = —k®

= Each vortex simultaneously carries a flux quantum ® and a proportional electric charge @y = —x®

8S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. 281, 409 (2000)
Paul Leask Solitons at Work 10/42
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Flux-charge binding is topological

The flux-charge binding mechanism is purely topological

Arises from the Chern—-Simons term and Gauss law, Maxwell term plays no part

Consider the Chern-Simons—Higgs model®

1 — R
£ = DD + 4 AaF, = V(¥ ])

® Gauss' law is algebraic Ay = - kB
g2

Noether charge is still
Qm=/ dzxq2A0|¢|2=—/€/ d’xB = —k®
R2 R2

This is the flux—charge binding mechanism — purely topological, enforced by the CS term

9S. A. Parameswaran, S. A. Kivelson, E. H. Rezayi, S. H. Simon, S. L. Sondhi, and B. Z. Spivak, Phys. Rev. B 85, 241307 (2012)
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ﬂfKTH%% Vortex anyons

EEEEEEEEE

Static energy

® The static energy of the CSLG theory is

1 1
£ = ~Laatic = 5 DD + 282 + V(|6 ])~ 3 (0iA0? ~ vAB ~ A |

e At a first glance this appears not to be bounded from below
® Inner product of Gauss' law with the Ay and integrating by parts gives

- [ dxaos = [ &x Ao+ PlolPAY) = [P [@ik0? + 11243
R2 R2 R2

e Using this relation yields an energy that is positive (semi-)definite and bounded below

1
—q2A§|¢|2}

1 1 1
E= [ d>x{Z|Dy|?+=B?>+V + | VA +
[, x| 310012 + 582+ VAIuD + 5194012+

Paul Leask Solitons at Work 13/42
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Non-local — constrained local

e Static vortex anyons are minimizers of the static energy

E=/R {—IDw|2+;B2+V(|¢|)+—|VA0|2 |w|2}

subject to Gauss' law
(-2 + ?[0]2) Ay = B

® As the energy is bounded below = amenable to minimization methods

This is inherently a non-local problem, but has been reformulated as a constrained minimization problem

Challenges of this type are not unique to the CSLG framework
® They arise more broadly across both condensed matter and high energy physics
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Non-local problems in high energy & condensed matter physics

® Nuclear skyrmions stabilized by u)—mesonslo'11 (Skyrme field - ¢ € SU(2), potential - w € R):
. 2,
2

® Demagnetization in chiral magnets12 (Magnetization - n € 52, magnetic potential - ¢ € R):

1
= 2 ldgl? + VR + 5 [dwl? (-V?+1)w = -cBs

= —|dn|2 +DZd (nx 9m) + V(n) + —|o|¢|2 V2 = —ugMs[V - n]
i=1

e Flexoelectric self-polarization in chiral liquid crystals (Director - n € RP?, electric potential - ¢ € R):

£ = g|dn|2 + Kgo [n- (V xn)] + V(n) + —|d |12, V2 = —;[V-Pf(n)]
0

105 B. Gudnason and M. Speight, J. High Energ. Phys. 07, 184 (2020)
1D, Harland, P. Leask, and M. Speight, J. High Energ. Phys. 06, 116 (2024)
12p Leask and M. Speight, arXiv:2504.17772 [cond-mat.mes-hall]
13p_ Leask, Phys. Rev. Res. 7, 043001 (2025)
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Constrained Newton flow

® Problems of this nature are well-suited to the constrained Newton flow method!*
e Static vortex anyons are critical points of the static energy
= Solutions of static Ginzburg-Landau equations

oV
DiDiw = 28_77; - q2A(2)¢, (91(8]/\, - 8,-Aj) = J,' - /fé,'j@jAO

Must also satisfy Gauss' law (—8,-8,- + q2|¢|2) Ay = -kB

We reformulate Gauss constraint as an unconstrained optimization problem

1 1
min F(Ay),  F(Ay) = /20|2><{§|VA0|2 + 5q2|¢|2A§ + FUBAO}
R

1) const.

Solve using non-linear conjugate gradient descent with line search strategy

Conjugate step-size updated using Polak—Ribiére—Polyak method

14The CUDA code for this method in the CSLG theory is available on my public github repository https://github.com /Paulnleask /cuSuperAnyon
Paul Leask Solitons at Work

16/42


https://github.com/Paulnleask/cuSuperAnyon

as

Qg;.f-’\%g
EFKTHE  Vortex anyons

VETENSKAP
28 OCH KONST 9%

3&9 gl%

Constrained Newton flow

® \We now solve the static GL equations, assuming A satisfies the Gauss constraint
— Arrested Newton flow!®: Accelerated gradient descent method with flow arresting criteria
® Formulate the minimization as a second order dynamical problem and solve the second order system
d?y 1 oV . 12, d?A;
ﬁ = ED,'Di?,b— 877; + q @/J —dt2 = @(@A,-—@,-Aﬂ —J,' + liE,'jajAO,
e Can be reduced to a coupled first order system = solve using RK4
e As initial configuration, we use an extended Abrikosov—Nielsen—Olesen (ANO) ansatz!0-17
Na(r) . kB

sinf,—cosf), Ay = —
qr ( ) 0 q2m2

v =mp(Ne™’, A=

155 B. Gudnason and J. M. Speight, J. High Energ. Phys. 07, 184 (2020)
16 A Abrikosov, J. Phys. Chem. Solids. 2, 199 (1957)
17H_ B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973)
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Abelian Higgs model

Consider AH model with the conventional quartic Higgs potential

| >

1 1 2
L= SDpDiy = 2F Fy = V9D, V([¢]) = (mz—lwlz)

Higgs mass my = \/Am, coherence length &5 = 1/myy

Proca mass my = gm, magnetic penetration depth &, = 1/my

GL parameter dictating superconducting typology is kg = {m/Es = VI

® /) < g: Type-l, attractive intervortex force
e /) > g Type-ll, repulsive intervortex force
e /)= q: BPS, no intervortex force

Paul Leask Solitons at Work 19/42



as

a?%%a
ZKTHS

VETENSKAP é}"
28 OCH KONST 9%

St

Anyon bound states

e CSLG theory: type-1/1l dichotomy is broken
e Each vortex carries a magnetic flux + proportional Noether electric charge
= Induces electrostatic repulsion between vortices
e In the typical type-ll repulsive regime (x > 1), the repulsive interaction force is now stronger
® At critical coupling A = 1, vortices now repel one another
® In the type-l attractive regime (A < 1), x can force vortex cores (zeros of 1)) to split
e |f x is large, the interaction force becomes entirely repulsive
® For relatively small s, vortex cores split but remain bounded
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E/N=2.9063, N=-1.0001, Q,,,/(—x®,)=-1.0006, Q,=0.0002 (A=0.5, m=1.0, £=0.50)

&z PW(@)|? Ay(Z
() 5 [9()] Lo 5 ()
0.20
oo 40 0.8 40
0.15
30 0.6 30
0005 20 0.4 20 0-10
10 0.2 0.05
0.000 0 0.00
®(7) = Fip pe(F) = —V24,
50 - 0.0000 50
0.006 0.0020
40 - -0.0005
30 - 0.004 0.0015
- -0.0010
20 - 0.0010
-0.0015 0.002
10 - 0.0005
-0.0020 0.000
0n \ | 0.0000
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E/N=2.9055, N=-1.9999, Q,,/(—r®()=-1.9999, Q.=0.0001 (A=0.5, m=1.0, £=0.50)

E(@ P(2)|? Ay(Z
@ . Y@ 0w @
0.20
0.010 40 0.8 40
30 0.6 30 0-15
0.005 20 0.4 20 0.10
10 0.2 0.05
0.000 0 0.00
(p(d_})):Flg pe(f):—VQAo
50 - 0.0000 50
0.006
40 - 40
-0.0005 0.002
0.004
30 - 30
: -0.0010
20 - 20 0.002 0.001
-0.0015
10 - 10
0.000
-0.0020
0A I ! 0.000
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E/N=2.9047, N=-2.9997, Q,,/(—£®()=-2.9999, Q.=0.0001 (A=0.5, m=1.0, £=0.50)

&2 P(2)|? Ay(Z
(7) " ()] Lo “ (7)
0.20
0010 40 0.8 40
30 0.6 30 0.15
0.005 20 0.4 20 0.10
10 0.2 0.05
0.000 0 0.00
(p(d_})):Flg pe(f):—VQAo
50 - 0.0000 50
0.006
40 - -0.0005 40 0.002
20 - s 20 0.004
-0.0010
. »
50 - 2 0.002 0.001
-0.0015
10 - 10
0.000
-0.0020
0n . . 0 0.000
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E/N=2.9041, N=-3.9997, Q,,/(—r®()=-3.9998, Q.=0.0002 (A=0.5, m=1.0, £=0.50)

&7 P(2)|? Ay(Z
@) . ¥(@) P @)
0ot0 40 0.8 40 0-20
30 0.6 30 0.15
0.005 0.4 20 0.10
0.2 10 0.05
0.000 0 0.00
@(55) == F12
50 - 0.0000
0.006
40 - -0.0005 0.002
50 - - 0.004
. » -0.0010
20 - » 0.002 0.001
-0.0015
10 -
0.0020 0.000
04 | | e 0.000
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E/N=2.9036, N=-6.9995, Q,,,/(—r®()=-6.9994, Q,=0.0003 (A=0.5, m=1.0, k=0.50)
(Z)|? Ay(7)

50 1.00 50
0.010 40 o5 40 0.2
30 30
0.50
0.005 20 0.1
0.25 0
0.000 0 0.0
= 2 2
P (%) = q° Ag[tp)|
0.0000 50
0.006
40 -
-0.0005 0.002
50 - a® 0.004
- » » -0.0010
2 - «® . 0.002 0.001
10~ | 0.000
-0.002 '
0 . \ 0.0020 0.000
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Hybrid superconductivity

e Consider the type-l regime (A < 1) with x large enough to cause core splitting
e Binding energy remains negative and interaction energy is non-monotonic
= Bound stable multi-vortex anyon states
= Hybridization of type /1l superconductivity behavior
® | ook to understand long-range interactions for clues
e Must first consider the static screening structure and penetration depths
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Dynamical gauge masses
® |et us focus on the gauge field by considering the abelian Maxwell-Chern—Simons Lagrangian
1 K 1
L=~ FuF" + 2" AuFyp + o mpALAY

® my = gm is the usual Higgs (Proca) mass from symmetry breaking
Equation of motion for A, (in the Lorenz gauge J,,A" = 0) after Fourier transforming 0, — ip,, is

(P2 - m,24)77u1/ + ’./‘%;wppp A” =0, p = (w,k)

Inverse propagator in momentum space (Green's operator) is

D;_L:L (p) = (P2 - mf\)mu/ + /"‘%,uu,opp

For a massive excitation at rest (k = 0), the dynamical gauge masses are the propagator poles

2

detDl(w,k=0)=0 = i =M>2, M= m§\+%i

K
2

Paul Leask Solitons at Work 29/42
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Dynamical gauge masses M = \/m/24 + K2/4 + K/2

® M. are physical masses of propagating gauge excitations (topologically massive photons)
® They describe two physical propagating modes with different masses and helicities
® CS term assigns a handedness (chirality) to the gauge field, with helicities having differing masses
= Breaks parity and time reversal (each reverses handedness), but combination PT restores it
e Parity breaking “splits” B* into two on-shell masses M. 18
® These have associated length scales [+ = 1/ M+
e Paul-Kharel? identifies [+ as penetration depths with L giving rise to an energetically favorable vortex
e Consistency check: abelian Higgs limit lim,_,o M+ = my and lim,_,g/&- = A = 1/my v

18R, D. Pisarski and S. Rao, Phys. Rev. D 32, 2081 (1985)
195, K. Paul and A. Khare, Phys. Lett. B 174, 420 (1986)


https://doi.org/10.1103/PhysRevD.32.2081
https://doi.org/10.1016/0370-2693(86)91028-2
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Static far-field asymptotics

e Alternatively: can also obtain static screening masses and penetration depths by considering static
long-range asymptotics

® |et us work in the unitary gauge ©» € R and the Coulomb gauge 0;A; = 0
® Linearize about ground state {¢, A,} = {m+ ¢,0 + a,}

e Higgs field has mass my = VVT(m) = mv/\ and Proca mass is mp = gm
® Slight abuse of notation: B = ¢;0;a; and E; = —0;ag

e Static energy, linearized about ground state, is

2 2 i/
- %/dezx [0 (=2 + m,) 4] +%/]R2d2x (B a) & :mA) (_v;fm%) Lﬂ

Paul Leask Solitons at Work 31/42
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Static far-field asymptotics
® To linear order, Gauss constraint and static Ginzburg—Landau equations reduce to

(—V2 + m,2_,) o =0, (—V2 + m%) aj = Kejjdjap, <—V2 + mf\) ag = -kB

Higgs-amplitude mode ¢ decouples giving a static Klein-Gordon equation
Taking the curl of the linearized gauge field equation yields

(-V2 + mf\)B = liv280 (*)

Applying the Laplace operator to the linearized Gauss' law gives

(-V? + my)V?ag = -xV°B (¥*)

Applying the operator (-V? + m/24) to (*) and using relation (**), gives a scalar decoupled fourth order
equation for the magnetic field

[(—Vz + mf\)2 + /£2V2] B =0

Paul Leask Solitons at Work 32/42
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Static screening masses
® Magnetic field and electric field satisfy same linearized field equations, A.B = 0 and A, E; = 0, where

A, = [(—v2 + mf\)2 + ﬁ2v2] = (v2-m}) (V2-m?)

® Takes same form as linearized field equation for OP in superfluids with fermionic imbalance2?

e A, can be factorized into complex-conjugate eigenmodes m. (static screening masses)21

® These masses do not agree with our computation of the dynamical gauge masses M+ € R...

20M. Barkman, A. Samoilenka, T. Winyard, and E. Babaev, Phys. Rev. Res. 2, 043282 (2020)

2IM. Stalhammar, D. Rudneva, T. H. Hansson, and F. Wilczek, Phys. Rev. B 109, 064514 (2024)
Paul Leask Solitons at Work
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Penetration depths: dynamical gauge or static screening?

® Dynamical gauge masses M+ € R, whereas static screening masses m+ € C, with

My = \/m3 + k2/4+£/2,  mi=\/m3—r2/4%iKk/2

e Why the discrepancy and which masses define the penetration depths?

® In both cases, the abelian Higgs limit is recovered lim,._,o m+ = lim,_,o M+ = my, and
lim,{_ﬂ) )\j: = lim,{_>0 /:|: = A

e Dynamical gauge masses are the poles of the propagator in Minkowski space Dy, (w, 0)

e Static screening masses are the poles of the propagator in Euclidean space Dg(0, k)

e \We must have analytic continuation between Minkowski and Euclidean formulations

= Consistency condition ensuring that Euclidean and Minkowski propagators describe the same analytic
structure

Paul Leask Solitons at Work 34/42
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Penetration depths: static screening masses v

® Dynamical gauge masses M1 € IR, whereas static screening masses m+ € C, with

My = \/m% +K2/4+k/2,  mi=\/m3-K2/4+iKk/2

® To be self-consistent as a QFT they must be related by a Wick rotation P = w s iw
® This translates to an effective Wick rotation x — ix

e Complex-conjugate static poles correspond to imaginary continuation of the real-time propagator poles to
Euclidean frequency axis

® |n AH model, dynamical gauge masses are identical to static screening masses
® (S term breaks parity and this is no longer true
® Penetration depths (screening lengths) are related to static screening masses, not dynamical gauge masses
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Dynamical gauge (M, /1) vs static screening (m+, A+)

e M.y: tell you how fast the gauge field oscillates in time — dynamical response
® /. : propagation length scales or Compton wavelengths

m-+: tell you how fast the fields decay in space — static screening

A+ spatial structure of static fields (e.g. vortex profiles)

Static screening masses are
: K
myL =axif, o= m/24—/<;2/4, B=§

= Magnetic & electric fields share common penetration depth Agayge but differ by oscillation frequency 1/ Aosc

1 1 27 47
- = P /\osc =
0%

m/24—/<;2/4 p

>\gauge =

Paul Leask Solitons at Work 36/42



by

L,
EKTH®

VETENSKAP
<28 OCH KONST %%

L

Long-range interactions




as

s?%%a
FKTHY

VETENSKAP é}
28 OCH KONST 9%

St

Long-range interactions

e Can determine long-range interactions following point-particle method?2
® Done in two parts:

1. Add linear sources to linearized energy, such that solutions of field equations are exactly single-vortex far fields
2. Compute the interaction energy from the on-shell cross term in the linearization

e After a bit of work?3, the interaction energy of a pair of separated vortex anyons is given by
_ 2 —aR 2
Vint (R) = 27 || cg| 26 cos (3R - ) - Ko (myR)|

e Standard Higgs contribution remains monotone attractive

® Gauge term becomes a damped oscillator with envelope e R/VR, decay rate @ = \/mf\ — k2/4, and
oscillation frequency 5 = x/2, alternating between attractive and repulsive behavior

22§ M. Speight, Phys. Rev. D 55, 3830 (1997)
23pP_ Leask, arXiv:2510.04830 [cond-mat.supr-con]
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Long-range interactions

e Oscillatory attractive/repulsive behavior of gauge contribution leads to non-monotonic interactions
e |f gauge term is dominant over Higgs term at long-range:
2y

® Provides a repulsive force initially (R < = + <)

® Switches to an attractive force at Ionger range (R > T + 2:)
® Repeats this behavior in a decaying oscillatory fashlon as the R increases

® Breaks usual vanilla type |/Il dichotomy
= Hybrid of type | & Il superconductivity behavior
e Similar behavior arises in multiband superconductors, called type 1.5 superconductivity?*2
e Hybrid behavior there arises to due competing length scales with & < A < &
e Hybrid behavior here arises from the decaying oscillatory behavior of the gauge field

24E. Babaev and M. Speight, Phys. Rev. B 72, 180502 (2005)
25E. Babaev, J. Carlstrém, and M. Speight, Phys. Rev. Lett. 105, 067003 (2010)
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Abelian Higgs limit

e Consistency check, must recover AH model in the limit x — 0
® Decay rate becomes lim,_,oa = m4 = gm and oscillatory behavior vanishes, lim, o3 = 0

= Magnetic penetration depth is recovered
1

mA

SRS

1im>\aue=
/{HOg J

e Complex-conjugate screening masses tend to single real-valued Proca mass

lim my = a = my
k—0

® Also recover long-range interaction energy of AH model20:27
lim Vine(R) = 2n [c%KO(mAR) —ci,Ko(mHR)]
K—

26| M. A. Bettencourt and R. J. Rivers, Phys. Rev. D 51, 1842 (1995)
2TK. Fujikura, S. Li, and M. Yamaguchi, J. High Energ. Phys. 12, 115 (2023)
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Conclusion and further work
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Conclusion

Gauss' law binds magnetic flux to electric charge = anyonic vortices

CS term makes screening masses complex

Electric and magnetic fields decay with common penetration depth but acquire oscillatory phase shift

Breaks type-1/ll dichotomy = new hybrid typology
e Vortex anyons form stable bound states with separated cores

= Theoretical realization of hybrid superconducting behavior in an anyon superconductor
e Future directions include:

® Systematic study of vortex lattice phases
® Role of the CS term in dynamical interactions of vortex anyons
® Short-range interactions of vortex anyons30

28
29

28M. Speight and T. Winyard, J. Phys. A: Math. Theor. 58, 095203 (2025)
29D. Bazeia, J. G. F. Campos, and A. Mohammadi, J. High Energ. Phys. 12, 108 (2024)
30M. Speight and T. Winyard, Phys. Rev. D 112, 055024 (2025)
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