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Motivation

Motivation

• Possibility of superconductivity occurring in a ferromagnetic material was first addressed by Ginzburg1

• Coexisting magnetic and superconducting states were later proposed by combining Ginzburg–Landau
theory with a mean field theoretic model of the magnetic subsystem2,3

• Magnetic order is associated with local moments, while the conduction electrons carry superconductivity
• There exists a stable temperature range below Tm < TC such that the magnetization ~m ∈ S2

⇒ Topological magnetic spin textures coexisting with superconducting states
• Composite topological excitations: magnetic skyrmion-superconducting vortex pair (SVP)
• SVPs already observed experimentally in chiral magnet-superconductor (CMSC) heterostructures4

1V. Ginzburg, Sov. Phys. JETP 4, 153 (1957)
2E. I. Blount and C. M. Varma, Phys. Rev. Lett. 42, 1079 (1979)
3H.S. Greenside, E.I. Blount and C.M. Varma, Phys. Rev. Lett. 46 (1981) 49
4EY.-J. Xie, A. Qian, B. He, Y.-B. Wu, S. Wang, B. Xu et al., Phys. Rev. Lett. 133 (2024) 166706
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Motivation

Motivation

• In CMSC heterostructures, vortices usually approximated by thin film Pearl vortex (no back-reaction)5,6

⇒ Chiral magnetic system with external inhomogeneous applied magnetic field
• SC vortex interactions7 and FM skyrmion interactions8 independently well understood
• Interactions of composite SVPs poorly understood
⇒ We want to understand long-range interactions of SVPs
⇒ Can type 1.5 superconductivity occur in this single superconducting OP model?

5S.S. Apostoloff, E.S. Andriyakhina, P.A. Vorobyev, O.A. Tretiakov and I.S. Burmistrov, Phys. Rev. B 107 (2023) L220409
6S.S. Apostoloff, E.S. Andriyakhina and I.S. Burmistrov, Phys. Rev. B 109 (2024) 104406
7N.S. Manton and J.M. Speight, Commun. Math. Phys. 236 (2003) 535
8B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Z. Phys. C 65 (1995) 165
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Ferromagnetic superconductor model

Model setup and parameters

• Superconducting order parameter ψ ∈ C
• |ψ|2 is a measure of local density of Cooper pairs
• Electromagnetic gauge field ~A = (A1,A2,A3)
• Associated magnetic field ~B = ~∇× ~A = (∂2A3, –∂1A3, ∂1A2 – ∂2A1)
• Gauge covariant derivative ~Dψ = ~∇ψ + iq~Aψ
• Cooper pair: effective charge q ∼ 2e
• Fixed length magnetization ~m ∈ S2 ⊂ R3

• The total Gibbs free energy functional of the system consists of three parts

F[ψ, ~A, ~m] = Fsc[ψ, ~A] + Fmag[~m] + Fint[ψ, ~A, ~m] (1)
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Ferromagnetic superconductor model

Ferromagnetic superconductor model

• In the exchange approximation, the free energy of an isotropic ferromagnet in the absence of an applied
magnetic field is given by

Fmag[~m] =
∫
R2

d2x
{
α(T)

2 |~m|2 +
β

4|
~m|4 +

1
2|∇

~m|2
}
, α(T) = α0

(T – Tm)
Tm

(2)

• The superconducting order parameter is described by the Ginzburg–Landau free energy

Fsc[ψ, ~A] =
∫
R2

d2x
{
a(T)

2 |ψ|2 +
b
4|ψ|

4 +
1
2|
~Dψ|2 +

1
2|
~∇× ~A|2

}
, a(T) = a0

(T – Tc)
Tc

(3)

• Two main interactions of the superconducting OP ψ ∈ C with the magnetization ~m ∈ S2

⇒ Spin-flip scattering (direct) and the Zeeman interaction (indirect)
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Ferromagnetic superconductor model

Interactions
• One is via the direct effects of spin-flip scattering of conduction electrons with the magnetic moments

and conduction-electron polarization9,

Fspin-flip[ψ, ~m] =
∫
R2

d2x
{(
η1|~m|2 + η2|∇~m|2

)
|ψ|2

}
(4)

• The second is an indirect interaction which arises from the Zeeman interaction10

Fzeeman[~A, ~m] = –
∫
R2

d2x (~∇× ~A) · ~m (5)

• We will consider the effect of only the Zeeman interaction in this talk

9E.I. Blount and C.M. Varma, Phys. Rev. Lett. 42, 1079 (1979)
10S.-Z. Lin, L.N. Bulaevskii and C.D. Batista, Phys. Rev. B 86 (2012) 180506
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Ferromagnetic superconductor model

Ground state configurations
• The potential energy is given by Fp = a

2|ψ|
2 + b

4|ψ|
4 + α

2|~m|2 + β
4|~m|4

• The associated uniform ground state configurations are found to by solving the system of equations

δFp
δ|ψ|

∣∣∣∣
(u,m0)

= au+ bu3 = 0,
δFp
δ|~m|

∣∣∣∣
(u,m0)

= αm0 + βm3
0 = 0 (6)

• This gives us the ground state
u2 = –

a
b
, m2

0 = –
α

β
(7)

• The corresponding ground state free energy is determined to be

F∗p = –
a2

4b –
α2

4β (8)
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Ferromagnetic superconductor model

Field equations
• Superconducting vortices and magnetic skyrmions are solutions of the Euler-Lagrange field equations

δF
δψ∗

= –
1
2
~D · ~Dψ –

b
2

(
u2 – |ψ|2

)
ψ = 0, (9)

δF
δ~A

= q2|ψ|2~A+
iq
2

(
ψ~∇ψ∗ – ψ∗~∇ψ

)
+~J –~Jm = ~0, (10)

δF
δ~m

= –∆~m – ~∇× ~A = ~0. (11)

• From the gauge field equation (10), we get the supercurrent

~J =
iq
2

(
ψ∗~∇ψ – ψ~∇ψ∗

)
– q2|ψ|2~A (12)

and the magnetization current
~Jm = ~∇× ~m (13)
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Ferromagnetic superconductor model

Superconducting (Meissner) state

• In the SC phase, with Tm < T < Tc, the SC OP is uniform |ψ| = u
• Magnetic field is expelled from the bulk ~B = ~0 and magnetization absent |~m| = 0
• The free energy of the superconducting phase, for T < Tc, is simply

FSC = –
a2

4b (14)
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Ferromagnetic superconductor model

Ferromagnetic phase
• Characterized by suppression of superconductivity and vanishing of Cooper pairs, i.e. |ψ| = 0 everywhere
• Magnetic field in FM phase is given by ~B = ~m
• Uniform ground state configuration is

δF
δ~m

∣∣∣∣
|~m|=m0

=
(
α~m+ β|~m|2~m – ~∇× ~A

)∣∣∣
|~m|=m0

= ~0 ⇒ m2
0 =

1 – α
β

(15)

• Corresponding free energy density in FM phase is11

FFM = –
(α(T) – 1)2

4β for T < T0
m (16)

• Critical temperature T0
m at which FFM = 0 is found by solving α(T0

m) = 1, which gives

T0
m =

(
1 +

1
α0

)
Tm > Tm ← Curie temperature (17)

11H.S. Greenside, E.I. Blount and C.M. Varma, Phys. Rev. Lett. 46 (1981) 49
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Ferromagnetic superconductor model

Superconducting ferromagnetic phase
• There also exists the possibility of a mixed superconducting and ferromagnetic phase, in some range

Tt < T < Tm, where |ψ| = u, ~m = ~m0 and the magnetic field is expelled from the bulk ~B = ~0
⇒ Screening currents restricted to surface of SC to compensate the external field in the bulk12

• In this superconducting ferromagnetic phase, the free energy density is found to be

FSCFM = –
a2

4b –
α2

4β for T < Tm (18)

• At T = Tm there is a phase transition from the SC phase to the SCFM phase
• For T < Tm, this mixed phase is energetically favorable over the superconducting phase
• Another phase transition at some T = Tt from the SCFM state to the FM state
• For this phase transition to be physical, we require 0 < Tt < Tm

12Z. Devizorova, S. Mironov and A. Buzdin, Phys. Rev. Lett. 122 (2019) 117002
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Ferromagnetic superconductor model

Superconducting ferromagnetic phase
• If this is the case, then SCFM phase is stable over the range Tt < T < Tm
• The transition temperature Tt is determined by solving

FSCFM = FFM ⇒
a2

0(Tt – Tc)
2

bT2
c

=
1
β
–

2α0(Tt – Tm)
βTm

. (19)

• Solutions of this are found to be given by

T±t =Tc


(

1 –
α0bTc
a2

0βTm

)
± 1

2

√√√√(2α0bTc
a2

0βTm
– 2
)2

– 4
(

1 –
b

a2
0β

–
2α0b
a2

0β

) (20)

• For particular parameters, the SCFM phase is found to exist in finite temperature
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Ferromagnetic superconductor model

Superconducting ferromagnets

• Coexistence of superconductivity and ferromagnetism observed in Uranium based heavy-fermion
superconductors UGe2, URhGe and UCoGe13

• These ferromagnetic superconductors have an orthorhombic structure
• They exhibit superconductivity well below their Curie temperature, Tm � TC
• Coexisting superconductivity and ferromagnetism also found in hole-doped RbEuFe4As414 and hole-doped

EuFe2As2
15

• Curie temperature in these materials is about Tm ∼ Tc/2
• We consider such ferromagnetic superconductors with Tm < TC

13A.D. Huxley, Physica C 514 (2015) 368
14Y. Liu, Y.-B. Liu, Z.-T. Tang, H. Jiang, Z.-C. Wang, A. Ablimit et al., Phys. Rev. B 93 (2016) 214503
15S. Nandi, W.T. Jin, Y. Xiao, Y. Su, S. Price, D.K. Shukla et al., Phys. Rev. B 89 (2014) 014512
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Ferromagnetic superconductor model
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Composite magnetic skyrmion-superconducting vortex
pair

Superconducting vortices
• Extended Abrikosov–Nielsen–Olesen (ANO) multi-vortex ansatz16,17

ψ = σ(r)eiNθ, ~A =
(
–
a(r)
r

sin θ,
a(r)
r

cos θ, g(r)
)
, N ∈ Z (21)

• Profile functions satisfy BCs σ(0) = 0,σ(∞) = u, a(0) = 0, a(∞) = N/q and g′(0) = g(∞) = 0
• By Stoke’s theorem, the total magnetic flux through the xy-plane is thus

Φ =
∫
R2

d2x B3 = 2π
∫ ∞

0
drda

dr =
2πN
q
≡ NΦ0 ← flux quantum Φ0 (22)

and ∫
R2

d2x (B1,B2) =
∫ ∞

0
dr rdg

dr

∫ 2π

0
dθ (sin θ, – cos θ) = (0, 0) (23)

16A. Abrikosov, J. Phys. Chem. Solids. 2, 199 (1957)
17H.B. Nielsen and P. Olesen, Nucl. Phys. B 61 (1973) 45
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Composite magnetic skyrmion-superconducting vortex
pair

Magnetic skyrmions
• For the magnetization field, the axially symmetric ansatz18

~m =


√

1 – f (r)2 cos(φ)√
1 – f (r)2 sin(φ)

f (r)

 (24)

• Monotonically increasing profile function with BCs f (0) = –1 and f (∞) = 1
• Spin down ~m↓ states at r = 0, spin up ~m↑ states as r→∞.
• Energy minimized for Bloch skyrmion (φ = θ+ π/2)
• The topological degree of the magnetization field is given by

n =
1

4π

∫
R2

d2x
[
~m ·
(
∂1~m× ∂2~m

)]
=

1
4π

∫ 2π

0
dθ
∫ ∞

0
dr df

dr sin f (r) = –1 (25)

18A.N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138 (1994) 255.
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Composite magnetic skyrmion-superconducting vortex
pair

Composite skyrmion-vortex pair

(a) Vortex (b) Bloch skyrmion (c) Composite skyrmion-vortex pair
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Composite magnetic skyrmion-superconducting vortex
pair

Composite skyrmion-vortex pair
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Asymptotic form of skyrmion-vortex pairs

Linearization of the Gibbs free energy
• Recall that the Gibbs free energy density is

F =
1
2(Diψ)∗(Diψ) +

1
4FijFij +

b
4

(
u2 – |ψ|2

)2
+

1
2∂jmi∂jmi – εijkmi∂jAk (26)

• Let us linearize about the ground state in ferromagnetic superconducting phase
ψ = u+ φ, ~A = 0 + ~α, ~m = ~m0 + ~n (27)

• To determine the form of the perturbation ~n, consider the expansion19

~m =
√

1 – ~n · ~n ~m0 + ~n ≈ ~m0 + ~n+ O(~n · ~n) (28)
• The magnitude of this is

~m · ~m =(1 – ~n · ~n)(~m0 · ~m0) + ~n · ~n+ 2
√

1 – ~n · ~n (~m0 · ~n)
= 1 + 2

√
1 – ~n · ~n (~m0 · ~n)

!= 1 ⇒ ~m0 · ~n = 0 ⇒ ~n ∈ T~m0S
2 (29)

19B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Z. Phys. C 65 (1995) 165
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Asymptotic form of skyrmion-vortex pairs

Linearization of the free energy
• Linearized energy is

Flin =
1
2|
~∇φ|2 + bu2φ2 +

1
2|
~∇× ~α|2 +

1
2q

2u2|~α|2 +
1
2|∇

~n|2 – ~n · (~∇× ~α) (30)

• Superconducting OP is described by a Klein-Gordon equation
δFlin
δφ

=
(
–∆+ 2bu2

)
φ = 0 (31)

• Gauge field by a Proca equation with source generated by the (curl of the) magnetization
δFlin
δ~α

= –∆~α+ ~∇(~∇ · ~α) + q2u2~α – ~∇× ~n = 0 (32)

• Magnetization by a vector Poisson equation, where the magnetic field provides the source
δFlin
δ~n

= –∆~n – ~∇× ~α = 0 (33)
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Asymptotic form of skyrmion-vortex pairs

Asymptotic form of the composite state

• Linearized field equation for OP reduces to Bessel’s modified equation of zeroth order,

r2d2φ
dr2 + r

dφ
dr – 2bu2r2φ = 0 ⇒ φ(r) = cψK0

(√
2bu2r

)
(34)

• Superconducting OP asymptotically behaves as ψ(r) ∼ u+ cψK0
(√

2bu2r
)

• Linearized field equation for in-plane gauge field ~αrθ = α(r)~eθ becomes modified Bessel equation of first
order

r2d2α
dr2 + r

dα
dr –

(
q2u2r2 + 1

)
α = 0 ⇒ α(r) = cAK1(qur) (35)

• In-plane gauge field has the asymptotic behaviour ~Arθ(r) ∼ cAK1(qur)~eθ
• Identical to single-band GL vortex asymptotics20

20J.M. Speight, Phys. Rev. D 55 (1997) 3830
Paul Leask SIG XIII 25/42

https://doi.org/10.1103/PhysRevD.55.3830


Asymptotic form of skyrmion-vortex pairs

Asymptotic form of the composite state
• Multiple choices for magnetization ansatz
• Bloch skyrmion lowest energy skyrmion numerically → Bloch perturbations ~n = f (r)~eθ
⇒ Coupled system of ODEs: d2f

dr2 +
1
r

df
dr –

1
r2 f –

dαz
dr = 0 (36)

d2αz
dr2 +

1
r

dαz
dr – q2u2αz +

df
dr +

f
r
= 0 (37)

• General solution for the asymptotic out-of-plane gauge field is

αz(r) = –
cm√

q2u2 – 1
K0

(√
q2u2 – 1 r

)
(38)

• Magnetization asymptotically is found to be given by

~n(r) =
cm

q2u2 – 1
K1

(√
q2u2 – 1 r

)
~eθ (39)
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Asymptotic form of skyrmion-vortex pairs

Asymptotics and length scales

• Summary of asymptotics:

φ(r) = cψK0

(
r
ξs

)
, ξs =

1√
2bu2

=
1√
–2a

(40)

~α(r) = cAK1
( r
λ

)
~eθ – cmξmK0

(
r
ξm

)
~ez, λ =

1
qu

,λz = ξm (41)

~n(r) = cmξ2
mK1

(
r
ξm

)
~eθ, ξm =

1√
q2u2 – 1

(42)

• The coherence lengths are ξs,m and magnetic penetration depths are λ
• Magnetization coherence length ξm is real for qu > 1
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Long-range interactions of skyrmion-vortex pairs

Long-range interaction energy of composite states
• We want to construct a linearized field theory such that its solutions are identical to asymptotics of the SVP
⇒ Introduce an external source Fsource = –ρφ – jiαi – σini into our energy

F =Flin + Fsource

=
1
2φ
(
–∆+

1
ξ2
s

)
φ+

1
2~α ·

(
–∆+

1
λ2

)
~α+

1
2
~n · (–∆)~n – ~n ·

(
~∇× ~α

)
– ρφ –~j · ~α – ~σ · ~n. (43)

• This gives us the modified system of coupled ODEs(
–∆+

1
ξ2
s

)
φ = ρ, (44)(

–∆+
1
λ2

)
~α =~j+ ~∇× ~n – ~∇

(
~∇ · ~α

)
, (45)

–∆~n =~σ + ~∇× ~α. (46)

• Need to solve this system using our already determined asymptotic forms
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Long-range interactions of skyrmion-vortex pairs

External sources
• Static Klein-Gordon equation in 2D has Green’s function K0, that is(

–∆+ λ2
)
K0(λr) = 2πδ(r) (47)

• Substituting φ(r) = cψK0(r/ξs) into modified field eqn yields

ρ(r) =
(
–∆+

1
ξ2
s

)
cψK0

(
r
ξs

)
= cψ2πδ(r) (48)

• Similar approach allows us to determine the other sources

~j(r) = – 2πcAλ
[
~ez × ~∇δ(r)

]
– 2πcmξmδ(r)~ez, (49)

~σ(r) =
cA
λ
K0
( r
λ

)
~ez. (50)

Paul Leask SIG XIII 30/42



Long-range interactions of skyrmion-vortex pairs

Long-range interaction energy setup
• Can now compute asymptotic interaction energy of well-separated SVPs
• Consider a pair at ~x1 and label that pairs as SVP(1), and another pair SVP(2) at ~x2
• Allow a relative SO(2)iso iso-rotation of the separated skyrmions
• Parameterize this by a rotation angle χ ∈ [0, 2π) that acts on in-plane magnetization (nr,nθ) components

of, say, SVP(1)

Paul Leask SIG XIII 31/42



Long-range interactions of skyrmion-vortex pairs

Long-range interaction energy setup

• Corresponding magnetization at SVP(1) is given by ~n(1)(χ, r1) = Rz(χ)~n(r1) where r1 = |~x – ~x1| and

Rz(χ) =
(
cosχ – sinχ
sinχ cosχ

)
∈ SO(2) (51)

• Zeeman interaction breaks the SO(2) isospin symmetry of this model
• To keep Zeeman interaction pointwise invariant under the SO(2) action, we require
~B(1)(χ, r1) = Rz(χ)~B(r1)

⇒ Simply to co-rotate ~α(r1) by the same SO(2) rotation, ~α(1)(χ, r1) = Rz(χ)~α(r1)
• Must also co-rotate the external current~j(1)(χ, r1) = Rz(χ)~j(r1) such that the Proca field equation

remains invariant
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Long-range interactions of skyrmion-vortex pairs

Long-range interaction energy of composite states

• Interaction energy between well-separated SVPs comes from cross-terms in the linearization,

Eint(~x1,~x2) = –
∫
R2

d2~x
{
ρ(1)φ(2) +~j(1) · ~α(2) + ~n(1) · ~σ(2) + ~n(1) · ( ~∇×~α)(2)

}
. (52)

• After a bit of work we arrive at the interaction energy in terms of SVP separation R = |~x2 – ~x1| and
relative skyrmion orientation χ:

Eint(R,χ) = 2π
{
c2AK0

(
R
λ

)
– c2ψK0

(
R
ξs

)}
︸ ︷︷ ︸

usual GL vortex-vortex interaction

– 2πc2mξ2
mK1

(
R
ξm

)
︸ ︷︷ ︸
Zeeman interaction

+ π2c2mξ4
mK1

(
R
ξm

)
cos(χ)︸ ︷︷ ︸

skyrmion-skyrmion interaction

. (53)
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Long-range interactions of skyrmion-vortex pairs

Skyrmion contribution to interaction energy
• Impact of skyrmion iso-rotation angle χ ∈ [0, 2π) on interaction energy,

∂Eint
∂χ

= –π2c2mξ4
mK1

(
R
ξm

)
sin(χ),

∂2Eint
∂χ2 = –π2c2mξ4

mK1

(
R
ξm

)
cos(χ). (54)

⇒ Extremized for the choice χ = kπ with k ∈ {0, 1}
• For large R > 0, we have

–π2c2mξ4
mK1

(
R
ξm

)
< 0 (55)

• Hessian ∂2Eint/∂χ2 is positive definite if k = 1, i.e. χ = π minimizes Eint
⇒ Eint is minimized if skyrmions are anti-aligned
• Then they experience short range repulsion and long-range attraction
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Long-range interactions of skyrmion-vortex pairs

b > 1
2q

2 ⇒ Type 1.5 SVP-SVP bound state
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Long-range interactions of skyrmion-vortex pairs

Vortex-vortex contribution to interaction energy

• Interaction energy to leading order can be expressed as

Eint(R,χ) ≈

√
π3

2Re
– R
ξm

{
c2mξ2

m
√
ξm
(
πξ2

m cos(χ) – 2
)
+ 2c2A

√
λe–

R(ξm–λ)
(λξm) – 2c2ψ

√
ξse

–R(ξm–ξs)
(ξsξm)

}
. (56)

• Two terms contributing to the vortex-vortex interaction: scalar core-core attraction and magnetic repulsion
• These are proportional to

UV–V(R) = c2A
√
λe–R(ξm–λ)/(λξm) – c2ψ

√
ξse–R(ξm–ξs)/(ξsξm) (57)

• First term originates from the gauge field, it repels vortices due to circulating currents
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Long-range interactions of skyrmion-vortex pairs

Hybrid type 1.5 superconductivity
• When core-core interaction dominates, the force –U′V–V(R) between vortices is attractive and the vortex

cores (zeroes of the order parameter ψ) coincide
• This occurs when

ξm – ξs
ξsξm

<
ξm – λ
λξm

⇒ λ < ξs (58)

• On the other hand, the magnetic repulsion dominates and force between vortices is repulsive when

ξm – ξs
ξsξm

>
ξm – λ
λξm

⇒ λ > ξs (59)

• For vortex clustering, we need ξs < λ < ξm
• For qu > 1, it is always true that λ < ξm
⇒ For type 1.5 superconductivity we only need λ > ξs, which amounts to choosing b > 1

2q
2
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Long-range interactions of skyrmion-vortex pairs

b < 1
2q

2 ⇒ Type I (6-vortex,1-skyrmion)
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Long-range interactions of skyrmion-vortex pairs

b > 1
2q

2 ⇒ Type 1.5 (6-vortex,1-skyrmion)
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Conclusion and further work

Conclusion

• Shown that superconducting vortices can coexist with magnetic skyrmions
• They form composite topological excitations: skyrmion-vortex pairs
• Skyrmions prefer to be anti-aligned, similar to baby Skyrme model
• Vortices exhibit type 1.5 superconductivity with clustering
• SVPs form bound states with other SVPs
• Future work to consider:

• Generalization to SVPs in chiral magnet-superconductors
• Crystalline structure of composite solitons?
• Dynamics of SVPs?
⇒ Hybridisation of modes if we let the magnetization length vary (via spin-flip scattering terms)
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