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Outline

- Non-polar director field 7(#) € RP* = 52 /7,

» Hopfions 7 : S — RP? and skyrmions 7 : S? — RP?

* Presence of topological defects cause orientational distortions — non-uniform strain
 Flexoelectric effect: electric polarization response ﬁf(ﬁ) — induced electric field E(ﬁ)
- Associated electrostatic self-energy o« E(i) - P;(i) —  back-reaction on ii

* How to include this electrostatic self-interaction and back-reaction?

« Analogous to demagnetization in chiral magnets (depolarization)

« Based on works [arXiv:2504.17772] and [arXiv:2504.17778]
« Slides available online at paulnleask.qgithub.io/talks/
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Nematic liquid crystal

* Frank-Oseen free energy for an anisotropic NLC is

1 - 1 1 s
Fro = / d3x {—Kl\S\Q + —KoT? + —KS\B\Q + V(n)
S A
S =5i=(V-n) T=7n-(Vx#A)| B=—(7 -V)i=nx(V xn)
Standard splay vector Pseudoscalar twist Standard bend vector

« No 1st order terms (in derivatives of the director) are present:
Ky = K - 2 K - 2
Fro = / de{Tl(V-ﬁ)Q + = i (Vx i)+ = i x (V x )| +V(ﬁ)}
J O

— Nothing to stabilize topological solitons
* Can introduce enantiomorphy into the systemm —— chiral liquid crystals
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Twist favoured (chiral) liquid crystal

2T
« Molecular chirality characterized by cholesteric twist go = —

* Enantiomorphy introduced via twist 17"+ 1"+ go "
* Frank-Oseen free energy picks up 15t order term

2 2

v
* Equivalent to DMI term in chiral magnets arising from Dresselhaus SOC

— Mechanism responsible for stabilization of bulk skyrmions

Fro = [d%{i(ﬁ-ﬁ)uﬁ [ﬁ-(ﬁxﬁ)]2+£ [ﬁxﬁxﬁ]g+ﬁ’2qg [ﬁ-(ﬁxﬁ)] +V(ﬁ)}
J )

— Favours Bloch skyrmions

[1] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1995)
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Relation to chiral magnets

 Stability of skyrmions in chiral liquid crystals arises from same mechanism responsible for
existence of skyrmions in chiral magnetic systems

* One constant approximation K; = K
 Vector identity for unit vector 7 [2]:

—

. 2 . 2 . . »
(ViR)? = (v-ﬁ) + (ﬁ-VX ﬁ) L (AXVXA)2+V- [(ﬁ-V)ﬁ— (V-ﬁ‘)ﬁ]
- Frank-Oseen energy reduces to chiral magnet energy with Dresselhaus DM|3]

Fro = LdBI {g(v’ﬁ)g + Kqo [ﬁ (V x ﬁ)] + V(ﬁ)}

Sl |

[2] A. Hubert and R. Schiafer, Magnetic Domains, Springer Berlin, Heidelberg (2014 )
[3] A.O. Leonov, |.E. Dragunov, U.K. RoBler and A.N. Bogdanov, Theory of skyrmion states in liquid crystals, Phys. Rev. E 90 (2014) 042502
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Splay and bend favoured liquid crystal

 Nematic liquid crystal 1 B 4
; 4 Fro =gk /d3${\5\2+T2+\B\2}
J )

« We have considered twist favoured (chiral) liquid crystals, T — T + qqg
* What about splay and bend favoured liquid crystals?
Fro = %K / 4%z {\5" + So|2+ T2+ |B+ B’UP}
J )

* For convenience, consider Sy = By = qpés

3

\ Y XL

K - . s tiee

o / Bz {?(v:ﬁ;)2 + Kqo [nz(V A)— Vnz] + V(ﬁ)} 2RI\
J X

DMI from /
Rashba SOC

Favours Néel hedgehog skyrmions
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Experimental realization

* LCs placed between parallel plates with separation d

System restricted to confined geometry!#!

d
Q= {(:ry::) eER? : |z| < —}

- 2
_, U
« Apply potential difference U ——  external electric field Fext = (0,}0? E)
 LCs are dielectric materials cole =
gelec — _T(Eext ) ﬁ)g

Can impose strong homeotropic anchoring 7i(x. y, 2 = £d/2) = ny

Mimicked in 2D systems by including Rapini-Papoular homeotropic surface anchoring
potentiall®] 1
ga,nch = = EI’VU ?‘lg
L Effective surface anchoring strength

[4] S. Afghah and J.V. Selinger, Theory of helicoids and skyrmions in confined cholesteric liquid crystals, Phys. Rev. E 96 (2017) 012708
[5] A. Rapini and M. Papoular, Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois, Le J. Phys. Collog. 30, C4 (1969)
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Flexoelectric self-polarization
» Flexoelectricity: coupling between electrical polarization and non-uniform strain
- Polarization caused by mechanical curvature (flexion) of director (flexoelectric)!é7!:

ﬁf — e [(ﬁﬁ)ﬁ] + e3 [ﬁ X (‘? X ﬁ)] — 15 + e3B
- Associated electrostatic potential satisfies the Poisson equation: [Ap = —V?p = ——V - P}
* Gauss' law

— — p — —
V-E:sz—\’p:—v-ip’f‘—‘

€0

Flexoelectric energy = electrostatic self-energy of electric charge density

€ = € ==
Fiexo = 50/3 dS-T'{aDA{P - Fiexo = 50 /3 dg‘T‘E‘Q
R JR

[6] R.B. Meyer, Piezoelectric effects in liquid crystals, Phys. Rev. Lett. 22 (1969) 918
[7] J.S. Patel and R.B. Meyer, Flexoelectric electro-optics of a cholesteric liquid crystal, Phys. Rev. Lett. 58 (1987) 1538
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Back-reaction of F.,

* First variation s d

Fﬂexo(ﬁt) = Eﬂf dBI *«P'A*;@

dt|,_, Q
« Poisson equation variation

1 =
A¢:——V~<

€0

* Flexoelectric variation becomes
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Numerical problem

» Topological solitons are minimizers of the flexoelectric Frank-Oseen energy

Frro(n) = /

n_ﬂ

K .
' { TV + Koo [7- (9 )] + V() + oo}

* Electrostatic potential subject to constraint

Ap = —;jﬁ : P:f in {2,

Ap =20 inR3/Q.

d
0= {(J:y;::) cER’® : |2| < E}

» Reformulate problem as unconstrained optimization problem!82): minimize the functional for
fixed i1, Py () N =
F(p)== / d°z |Ve|* + — /d :cgo(V-Pf)
2 Jg3 €0 Jo

* Approach: non-linear conjugate gradient method with line search strategy!'°

[8] P. Leask and M. Speight, Demagnetization in micromagnetics: magnetostatic self-interactions of bulk chiral magnetic skyrmions [arXiv:2504.17772]
[9] P. Leask, Flexoelectric polarization in chiral liquid crystals: electrostatic self-interactions of topological defects [arXiv:2504.17778]
[10] D. Harland, P. Leask and M. Speight, Skyrmion crystals stabilized by w-mesons, J. High Energ. Phys. 06 (2024) 116
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Algorithm summary

1.

Perform step of accelerated gradient descent method for director field n
Solve Poisson's equation for potential ¢ using NCGD with Fletcher-Reeves method

Compute total energy of the configuration (7;, ¥i) and compare to the energy of the
previous configuration (7i;_1, ¢;_1). If energy has increased, arrest the flow

Check convergence criteria: || Frro (7)||oc < 107° If the convergence criteria has been
satisfied, then stop the algorithm

Repeat the process (return to step 1)
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Skyrmions in liquid crystals
TWIST FAVOURED SPLAY-BEND FAVOURED
» Dresselhaus DMI favours Bloch skyrmions » Rashba DMI prefers Néel skyrmions
MBloch (7, #) = sin f(r)ép + cos f(r)e; fiNéel (1, 0) = sin f(r)é, + cos f(r)e;
* Bloch ansatz is solenoidal * Néel ansatz is not solenoidal
V - fiBloch = 0 = df
V - nNnge]l = ——— cos f(r 0
» Associated polarization is not = dr fir) #
- - J d o . . . . .
V. Papoa = E_s_f Sin2f(r) £ 0 Associated polarization is also not solenoidal
r T
. . S - esdf .
» Equal flexoelectric coefficients ¢; = e3 = V- Pploch = V * Pneel = — 3 sin2f(r)
r r

Flexoelectric Bloch and Néel skyrmions equivalent for e; = ej
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Twist favoured Bloch skyrmions

y ()

NBloch (7, @) = sin f(r)ép + cos f(r)e,

Negatively charged core

) (Nm/C) '

8

7 -0.1
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5 -0.3
4 -0.4
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Outer ring of positive charge

p(z,y) (C/pm?)

. A5
-20
3
4 6 8 «10718
x (pm)
p=—V-FPj
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Splay-bend favoured Néel skyrmions

MiNgel (T, 0) = sin f(r)ée, + cos f(r)é,

i(x,y)

:{;31;
S\ Y P24
TewdY é v

el
400 5 ¢ Q&L

e e e el

Quter ring of positive charge

o(z,y) (Nm/C)

8 8
v 0.05 2
/é\ 6 -0.1 /é\ 6
= =
=5 0.15 > 9
4 -0.2 4
3 0.25 3

Neutral core

Matter

Inner ring of negative charge

p(z,y) (C/pm?)

\ 0

5
-10
4 6 8 o™
z (pm)
p=-V-F;
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Hopfions

» Can be interpreted as a twisted skyrmion string, forming a closed loop in real space
» They comprise inter-linked closed-loop preimages of constant 7i(x, vy, z)
- Linking of closed-loop preimages of anti-podal points in S*/Z, = RP? defines Hopf index

ni(z,y,z) = £0.9 n3(z,y,2) =0 /

QHopt € T3(RP?) = 73(S?) = Z

’ QHopt = 1 Hopfion ansatz!"

10

x (pm) x (pm)
y (pm) y (pm)

[11] P. Sutcliffe, Hopfions in chiral magnets, J. Phys. A: Math. Theor. 51 (2018) 375401
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Hopfion structure (= 4pcm™)

Skyrmion twisting as it winds around the hopfion
core, changing from an in-plane skyrmion to an
out-of-plane antiskyrmion /

Structure of Bloch skyrmionium or a 2m-vortex!'?!

z (pm)

10

0 o
x (pm) x (pm)
y (pm)

y (pm)
[12] A. Bogdanov and A. Hubert, The stability of vortex-like structures in uniaxial ferromagnets, J. Magn. Magn. Mater. 195 (1999) 182
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Flexoelectric CLC hopfion (e = 4pcm™)

p(z,y,z) (V p(a,y,z) (V

(V) (V)
Electric scalar potential
- non-zero inR? /)

0 0

=]
©
=]

5 10
& (pm)

5 10
@ ()

p(z,y,2) (C/pm®)

Electric charge density confined within

d
Q= {(J:f,y?z) cER? : |z| < E}
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Hopfion to skyrmion transition

(1 = e3 = 4pCm™1)
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Hopfion —— Skyrmion (e =8pcm™)

Skyrmion terminating at point defects due to
boundary conditions!’!

Structure of a Bloch skyrmion

x (pm) x (pm)
y (pm) y (pm)

[13] J. B. Tai and I. I. Smalyukh, Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral
nematics, Phys. Rev. E 101 (2020) 042702
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Concluding remarks

Topological defects induce non-uniform strain
Flexoelectric polarization response — self-induced internal electric field

We have shown how to include the electrostatic self-energy and how to compute the back-
reaction

Stray depolarizing field outside confined geometry included

Flexoelectric self-interaction can destabilize hopfions into skyrmions

We showed how to relate liquid crystals to chiral magnets

While they are similar, the manifestation of topological defects in each system is unique
Electrostatic self-interaction also behaves differently in both systems
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Summary: electrostatic self-interactions of skyrmions

CHIRAL MAGNETS LIQUID CRYSTALS
Depolarizing field E= —‘?{,@

Demagnetizing field B=—-V

Associated magnetic potential ¢ : R? = R Associated electric potential ¢ : R? - R
AY = pop, p=—M(V -7) Ao =p/es, p=—V-Ps(ii)
Electrostatic self-energy

Magnetostatic self-energy

1 —— €0
Eclemag . 2_ dgx wﬁw Edepcnl — / dgx HOAHO
Ho JR2 2 Jr2
* Behaves like potential term in 2D e Scale invariant in 2D
i 1 . . .
Eclema,g (nf)\) — ﬁEclemag (ﬂ) Eflepﬂl(n}\) = E.;lep.;.l(?l)

Bloch skyrmions unaffected by Bloch skyrmions affected by

L N At =R eadf .
demagnetization ¢ . _ depolarization ¢ g, = —3—‘: sin2f (r) # 0
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