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Motivation

Motivation

• The magnetization in a ferromagnet has a dipolar moment associated with it
• This induces an internal demagnetizing magnetic field
• In turn, this generates a magnetostatic self-energy
• Want to find topological solitons (static energy minimizers)

⇒ There is back-reaction from the self-induced magnetic field on the magnetization
• How can this back-reaction be determined?
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Static energy of the model



Static energy of the model

Ising vs Heisenberg

(a) Ising
(b) Heisenberg
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Heisenberg magnet

Heisenberg magnet

• Consider the Heisenberg model of a system of spins 𝑆⃗𝑖 that are localised on the sites of a
𝑑-dimensional lattice:

𝐻𝛨 = −∑
𝑖,𝑗

J𝑖𝑗𝑆⃗𝑖 ⋅ 𝑆⃗𝑗, J𝑖𝑗 = {
𝐽 if 𝑖, 𝑗 are neighbours
0 else

• Mean field approximation: a proper dynamical variable is the expectation value of the spins, i.e.
the unit magnetization 𝑛⃗ ∈ 𝑆2 ⊂ R3

• Heisenberg Hamiltonian becomes
𝐻𝛨 = −𝐽∑

𝑖,𝑗
𝑛⃗𝑖 ⋅ 𝑛⃗𝑖+𝑎𝑒⃗𝑗 ,

where 𝑎𝑒⃗𝑗 is the vector connecting a lattice site 𝑖 with its neighbouring sites 𝑖 + 𝑎𝑒⃗𝑗
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Heisenberg magnet

Heisenberg magnet
• Taylor expansion of 𝑛⃗𝑖+𝑎𝑒⃗𝑗 for small lattice constant 𝑎 gives

𝑛⃗𝑖 ⋅ 𝑛⃗𝑖+𝑎𝑒⃗𝑗 = 𝑛⃗𝑖 ⋅ 𝑛⃗𝑖⏟
=1

+𝑎 (𝑛⃗𝑖 ⋅ 𝜕𝑗𝑛⃗𝑖)⏟
=0

+𝑎
2

2
𝑛⃗𝑖 ⋅ 𝜕

2
𝑗 𝑛⃗𝑖 + 𝑂(𝑎

3)

• Ignoring the constant 𝑛⃗𝑖 ⋅ 𝑛⃗𝑖 = 1, the Heisenberg Hamiltonian in the continuum limit is

𝐻𝛨 ≈ −
𝐽𝑎2

2
∑
𝑖,𝑗

𝑛⃗𝑖 ⋅ 𝜕
2
𝑗 𝑛⃗𝑖 → 𝐸exch[𝑛⃗] = −

𝐽𝑎2−𝑑

2
∫

R𝑑
d𝑑𝑥 (𝑛⃗ ⋅ 𝜕2𝑗 𝑛⃗)

• Integration by parts gives us the static energy of the 𝑂(3) sigma model

𝐸exch[𝑛⃗] =
𝐽𝑎2−𝑑

2
∫

R𝑑
d𝑑𝑥 (𝜕𝑗𝑛⃗ ⋅ 𝜕𝑗𝑛⃗) , 𝑛⃗ ⋅ 𝑛⃗ = 1
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Heisenberg magnet

Dzyaloshinksii–Moriya interaction
• At the lattice level, the DMI (an antisymmetric exchange interaction) is [Sov. Phys. JETP 19, 960
(1964)]

𝐻𝐷 = D∑
𝑖,𝑗

𝑑⃗𝑗 ⋅ (𝑛⃗𝑖 × 𝑛⃗𝑖+𝑎𝑒⃗𝑗)

• Taylor expanding again gives

𝑛⃗𝑖 × 𝑛⃗𝑖+𝑎𝑒⃗𝑗 = 𝑛⃗𝑖 × 𝑛⃗𝑖⏟
=0⃗

+𝑎𝑛⃗𝑖 × 𝜕𝑗𝑛⃗𝑖 + 𝑂(𝑎
2)

• DMI in the continuum limit is

𝐻𝐷 ≈ D𝑎∑
𝑖,𝑗

𝑑⃗𝑗 ⋅ (𝑛⃗𝑖 × 𝜕𝑗𝑛⃗𝑖) → 𝐸DMI[𝑛⃗] = D𝑎1−𝑑∫
R𝑑
d𝑑𝑥∑

𝑖
𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗)

• Topological spin textures arise due to competition between Heisenberg exchange interaction and
DMI

• Heisenberg exchange energy promotes parallel alignment of spins whereas DMI favors
non-collinear alignment of spins (spin canting)
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Heisenberg magnet

Continuum energy

• The energy in the continuum limit (for 𝑑 = 3) is 𝐸 = 𝐸exch + 𝐸DMI + 𝐸pot where [Zh. Eksp. Teor. Fiz.
95, 178-182 (1989)]

𝐸exch =
𝐽
2
∫

R3
d3𝑥 |d𝑛⃗|2,

𝐸DMI =D∫
R3
d3𝑥

3
∑
𝑖=1

𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗),

𝐸pot = ∫
R3
d3𝑥 (𝐾𝑚(1 − 𝑛

2
𝑧 ) +𝑀𝑠𝐵ext(1 − 𝑛𝑧)) ,

• Skyrmions are topological solitons in this model [e.g. New J. Phys. 18, 065003 (2016)]
• These are static solutions to the Euler-Lagrange field equations
• Chiral magnet can also be derived from string theory [J. High Energ. Phys. 11, 212 (2023)]
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Magnetic skyrmions

Topological magnetic spin textures
• Ground state configuration found by minimizing 𝐸pot ⇒ 𝑛⃗vac = 𝑛⃗↑ = (0, 0, 1)
• Finite (static) energy requires 𝑛⃗(𝑥⃗) → 𝑛⃗↑ as |𝑥⃗| → ∞

⇒ One-point compactification of space R2 ∪ {∞} ≅ 𝑆2

• Magnetization 𝑛⃗ is effectively a based map 𝑛⃗ ∶ 𝑆2 ↦ 𝑆2

• Gives rise to a non-trivial homotopy group 𝜋2(𝑆
2) = Z

• Configuration space is seen to consist of disconnected manifolds,

𝑀 = ⋃
𝑖∈Z

𝑀𝑖

• Magnetization configurations are identified by the topological degree

deg(𝑛⃗) = 1
4𝜋

∫
R2
d2𝑥 𝑛⃗ ⋅ ( 𝜕𝑛⃗

𝜕𝑥1
× 𝜕𝑛⃗
𝜕𝑥2

) ∈ 𝜋2(𝑆
2) = Z
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Magnetic skyrmions

Magnetic vortices

• Magnetic vortices areminimizers of the static energy functional
• Consider the radially symmetric ansatz

𝑛⃗(𝑟, 𝜃) = (sin𝑓(𝑟) cos 𝜃, sin𝑓(𝑟) sin 𝜃, cos𝑓(𝑟))

• Reduces problem to solving a non-linear ODE in 𝑓(𝑟)
• Profile function 𝑓(𝑟) decreases monotonically with boundary conditions 𝑓(0) = 𝑘𝜋 and 𝑓(∞) = 0
• This gives us 𝑛⃗(𝑟 = 0) = 𝑛⃗↓ and 𝑛⃗(𝑟 = ∞) = 𝑛⃗↑
• Gives rise to 𝑘𝜋-vortices
• 𝑘 = 1 yields a 𝜋-vortex, more commonly known as a Néel skyrmion with deg(𝑛⃗) = −1
• 𝑘 = 2 yields a 2𝜋-vortex, known as skyrmionium with deg(𝑛⃗) = 0 [J. Magn. Magn. Mater. 195,
182-192 (1999)]
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Magnetic skyrmions

Magnetic vortices

(a) Néel skyrmion (b) Skyrmionium

Figure: The magnetization 𝑛⃗ = (𝑛1, 𝑛2, 𝑛3) ∈ 𝑆
2 is coloured using the Runge colour sphere. Spin-up states 𝑛⃗↑ = (0, 0, 1) are

white, whereas spin-down states 𝑛⃗↓ = (0, 0, −1) are black. The hue is determined by the phase arg(𝑛1 + 𝑖𝑛2).
Paul Leask KTH 13/47



Magnetic skyrmions

Magnetic skyrmions
• Other radially symmetric ansätze can be considered

⇒ Different vortex/skyrmion solutions
• Skyrmion type is actually determined by the DMI term used

• We consider three different DMI terms: [Lifshitz invariants Λ
(𝑘)
𝑖𝑗 = 𝑛𝑖

𝜕𝑛𝑗
𝜕𝑥𝑘

− 𝑛𝑗
𝜕𝑛𝑖
𝜕𝑥𝑘
]

Dresselhaus Rashba Heusler

{𝑑⃗1, 𝑑⃗2} {−𝑒⃗1, 𝑒⃗2} {𝑒⃗2, −𝑒⃗1} {𝑒⃗1, −𝑒⃗2}
DMI Λ(𝑦)𝑥𝑧 − Λ

(𝑥)
𝑦𝑧 Λ(𝑥)𝑧𝑥 − Λ(𝑦)𝑦𝑧 Λ(𝑦)𝑥𝑧 + Λ

(𝑥)
𝑦𝑧

Skyrmion Bloch Néel Antiskyrmion
deg(𝑛⃗) −1 −1 +1

𝑛⃗ (
− sin𝑓(𝑟) sin 𝜃
sin𝑓(𝑟) cos 𝜃
cos𝑓(𝑟)

) (
sin𝑓(𝑟) cos 𝜃
sin𝑓(𝑟) sin 𝜃
cos𝑓(𝑟)

) (
− sin𝑓(𝑟) sin 𝜃
− sin𝑓(𝑟) cos 𝜃
cos𝑓(𝑟)

)
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Magnetic skyrmions

Skyrmion types

(a) Bloch (b) Néel (c) Antiskyrmion
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Magnetostatic self-energy and its back-reaction

Magnetostatic problem

• The magnetization behaves as a magnetic dipole
• This induces an internalmagnetic field (demagnetizing field)

⇒ Generates a magnetostatic self-energy
• Computing this energy and the back-reaction on the magnetization is difficult
• Dzyaloshinksii–Moriya interaction assumed to be more significant
• Stripe domain structures in ordinary ferromagnets with no interfacial DMI were studied
analytically [Phys. Rev. B 48, 10335 (1993)]

• Analytic investigation including dipolar interactions for Dresselhaus DMI with Néel type
modulations [Phys. Rev. Lett. 105, 197202 (2010)]

• Numerical study of dipolar interaction with Monte-Carlo simulations [J. Magn. Magn. Mater 324,
2171 (2012)]
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Magnetostatic self-energy and its back-reaction

Self-induced magnetic field
• The magnetic field induced by an isolated dipole of moment 𝑚⃗ at 0⃗ is

𝐵⃗ = −
𝜇0
4𝜋𝑟3

(𝑚⃗ − 3𝑚⃗ ⋅ 𝑥⃗
𝑟2

𝑥⃗)

• This can be expressed as the gradient of a magnetic potential 𝜓 ∶ R3 → R, that is,

𝐵⃗ = −∇⃗𝜓, 𝜓 = −𝜇0𝑚⃗ ⋅ ∇⃗ ( 1
4𝜋𝑟

)

• Consider now a continuous distribution of magnetic dipole density 𝑚⃗ ∶ Ω → R3, whereΩ ⊆ R3 is
some domain. The magnetic field it induces, at a point 𝑥⃗ ∈ R3, is given by integrating the field
induced at 𝑥⃗ by 𝑚⃗(𝑦⃗) at 𝑦⃗ ∈ Ω over 𝑦⃗ ∈ Ω:

𝐵⃗(𝑥⃗) = −
𝜇0
4𝜋

∫
Ω
d3𝑦⃗ 1

|𝑥⃗ − 𝑦⃗|3
{𝑚⃗(𝑦⃗) − 3

𝑚⃗(𝑦⃗) ⋅ (𝑥⃗ − 𝑦⃗)
|𝑥⃗ − 𝑦⃗|2

(𝑥⃗ − 𝑦⃗)}
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Magnetostatic self-energy and its back-reaction

The magnetic potential
• Again, this is the gradient of the magnetic potential 𝜓 ∶ Ω → R,

𝐵⃗ = −∇⃗𝜓, 𝜓(𝑥⃗) = −𝜇0∫
Ω
d3𝑦⃗ {𝑚⃗(𝑦⃗) ⋅ ∇⃗𝑥 (

1
4𝜋|𝑥⃗ − 𝑦⃗|

)}

• We now note that the Green’s functions for the Laplacian Δ = −∇2 onΩ ⊆ R3 is

𝐺(𝑥⃗, 𝑦⃗) = 1
4𝜋|𝑥⃗ − 𝑦⃗|

⇒ Δ𝑥𝐺(𝑥⃗, 𝑦⃗) = 𝛿(𝑥⃗ − 𝑦⃗)

• The Laplacian of the potential is

Δ𝑥𝜓(𝑥⃗) = − 𝜇0∫
Ω
d3𝑦⃗ {𝑚⃗(𝑦⃗) ⋅ ∇⃗𝑥 [Δ𝑥𝐺(𝑥⃗, 𝑦⃗)]}

= − 𝜇0∫
Ω
d3𝑦⃗ {𝛿(𝑥⃗ − 𝑦⃗) [∇⃗𝑦 ⋅ 𝑚⃗(𝑦⃗)]}

= − 𝜇0∇⃗𝑥 ⋅ 𝑚⃗(𝑥⃗)
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Magnetostatic self-energy and its back-reaction

Interaction energy of a distribution of magnetic dipoles

• Therefore, we see that the magnetic potential 𝜓 satisfies Poisson’s equation

Δ𝜓 = 𝜇0𝜌, 𝜌 = − (∇⃗ ⋅ 𝑚⃗)

• The magnetic field induced by the dipole distribution 𝑚⃗ coincides, therefore, with the electric field
induced by the charge distribution − (∇⃗ ⋅ 𝑚⃗) [Phys. Rev. B 20, 33 (1979)]

• Can think of − (∇⃗ ⋅ 𝑚⃗) as “electric charge density”
• The interaction energy of a pair of magnetic dipoles 𝑚⃗(1), 𝑚⃗(2), is −𝑚⃗(1) ⋅ 𝐵⃗(2), where 𝐵⃗(2) is the
magnetic field induced by 𝑚⃗(2) at the position of 𝑚⃗(1)

• Hence, the total dipole-dipole interaction energy of a continuous dipole density distribution is

𝐸DDI = −1
2
∫
Ω
d3𝑥⃗ (𝐵⃗(𝑥⃗) ⋅ 𝑚⃗(𝑥⃗))
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Magnetostatic self-energy and its back-reaction

DDI energy = electrostatic self-energy
• It is useful to rewrite the DDI energy as a functional of the magnetic potential 𝜓:

𝐸DDI =
1
2
∫
Ω
d3𝑥⃗ 𝑚⃗ ⋅ ∇⃗𝜓

= − 1
2
∫
Ω
d3𝑥⃗ (∇⃗ ⋅ 𝑚⃗) 𝜓 + 1

2
∫
𝜕Ω
d𝑠⃗ ⋅ (𝜓𝑚⃗)

= 1
2𝜇0

∫
Ω
d3𝑥⃗ 𝜓Δ𝜓 + 1

2
∫
𝜕Ω
d𝑠⃗ ⋅ (𝜓𝑚⃗)

• We will use this formula only in situations where the boundary conditions ensure that the
boundary term vanishes. In this case, 𝐸DDI coincides with the “electrostatic” self-energy of the
“charge” distribution −(∇ ⋅ 𝑚⃗)

• To see this, we use the general identity 𝜓Δ𝜙 = ∇⃗𝜓 ⋅ ∇⃗𝜙 − ∇⃗ ⋅ (𝜓∇⃗𝜙) and the divergence theorem to
express the DDI energy as

𝐸DDI =
1
2𝜇0

∫
Ω
d3𝑥⃗ |∇⃗𝜓|2 = 1

2𝜇0
∫
Ω
d3𝑥⃗ |𝐵⃗|2
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Magnetostatic self-energy and its back-reaction

Interaction energy summary
• Can compute the electrostatic self-energy in a few ways, most computationally expensive is:

𝐸DDI = − 1
2
∫
Ω
d3𝑥⃗ (𝐵⃗(𝑥⃗) ⋅ 𝑚⃗(𝑥⃗)) , 𝐵⃗(𝑥⃗) = −

𝜇0
4𝜋

∫
Ω
d3𝑦⃗ 1

|𝑥⃗ − 𝑦⃗|3
{𝑚⃗(𝑦⃗) − 3

𝑚⃗(𝑦⃗) ⋅ (𝑥⃗ − 𝑦⃗)
|𝑥⃗ − 𝑦⃗|2

(𝑥⃗ − 𝑦⃗)}

• Better to determine the magnetic vector potential 𝜓 ∶ Ω → R first, such that

𝐸DDI =
1
2𝜇0

∫
Ω
d3𝑥⃗ (𝜓(𝑥⃗)Δ𝑥𝜓(𝑥⃗))

• You can choose to do it non-locally (computationally expensive)

𝜓(𝑥⃗) = −𝜇0∫
Ω
d3𝑦⃗ {𝑚⃗(𝑦⃗) ⋅ ∇⃗𝑥 (

1
4𝜋|𝑥⃗ − 𝑦⃗|

)}

• This non-locality can be avoided by instead introducing the constraint that the magnetic potential
𝜓must satisfy the Poisson equation Δ𝑥𝜓(𝑥⃗) = −𝜇0 (∇⃗𝑥 ⋅ 𝑚⃗(𝑥⃗))
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Magnetostatic self-energy and its back-reaction

Interaction energy summary

• The magnetization 𝑚⃗ behaves like a magnetic dipole moment
⇒ Induces an internal demagnetizing magnetic field 𝐵⃗
• Want to include the magnetostatic self-energy EDDI = |𝐵⃗|2/2

⇒ Minimization problem→ constrainedminimization problem EDDI =
1
2𝜇0
𝜓Δ𝜓, where Δ𝜓 = −𝜇0∇⃗ ⋅ 𝑚⃗

• Also want to determine the back-reaction of 𝐵⃗ on 𝑚⃗
⇒ Need to compute the variation of EDDI w.r.t. 𝑚⃗
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Reduction to planar magnetic skyrmions

Translation invariant solutions

• Case of interest: dipole-dipole interaction energy of a chiral ferromagnet in a translation invariant
configuration

• We impose translation invariance in the direction 𝑒⃗3 = (0, 0, 1), so 𝑛⃗ is independent of 𝑥3
• Consider fields 𝑛⃗ ∶ R2 → 𝑆2 which have compact support in the sense that there exists 𝑅0 > 0 such
that, for all 𝑟 ∶= |(𝑥1, 𝑥2)| ≥ 𝑅0, 𝑛⃗(𝑥1, 𝑥2) = 𝑛⃗↑

• Since 𝑛⃗ is translation invariant, total dipole interaction energy either vanishes (for example, if 𝑛⃗ is
constant) or diverges

• The energy per unit length (in the 𝑒⃗3 direction) may be finite however
• Coincides with the total energy of the slabΩ = R2 × [0, 1], which we compute as the limit of the
energy of the thick diskΩ𝑅 = {𝑥⃗ ∶ 𝑥21 + 𝑥

2
2 ≤ 𝑅2, 0 ≤ 𝑥3 ≤ 1} as 𝑅 → ∞
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Reduction to planar magnetic skyrmions

Boundary conditions
• Boundary term d𝑠⃗ ⋅ (𝜓𝑚⃗) vanishes identically for all 𝑅 > 𝑅0
• Hence

𝐸DDI =
1
2𝜇0

∫
R2
d2𝑥𝜓Δ𝜓, Δ𝜓 = −𝜇0𝑀𝑠 (

𝜕𝑛1
𝜕𝑥1

+
𝜕𝑛2
𝜕𝑥2

)

• Consider the large 𝑟 behaviour of 𝜓 ∶ R2 → R
• Any solution of the Poisson equation Δ𝜓 = 𝜌 on R2 has a multipole expansion

𝜓 = −
𝑞
2𝜋
log 𝑟 + 𝑂(𝑟−1), 𝑞 = ∫

R2
d2𝑥 𝜌

• In general, such functions are logarithmically unbounded
• In our case 𝜌 is (proportional to) the divergence of the in-plane field (𝑛1, 𝑛2), so 𝑞 = 0 by the
divergence theorem

⇒ 𝜓 is (at least) 1/𝑟 localized
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Variation of the magnetostatic self-energy

Variation of the dipolar energy
• Let 𝑛⃗𝑡 be a smooth variation of 𝑛⃗ = 𝑛⃗0 and define 𝜖⃗ = 𝜕𝑡𝑛⃗𝑡|𝑡=0
• Denote 𝜓𝑡 the associated solution of Δ𝜓𝑡 = −𝜇0𝑀𝑠∇⃗ ⋅ 𝑛⃗𝑡 decaying to 0 at infinity, and 𝜓̇ = 𝜕𝑡𝜓𝑡|𝑡=0
• The variation of 𝐸DDI induced by 𝑛⃗𝑡 is

d
d𝑡
∣
𝑡=0
𝐸DDI(𝑛⃗𝑡) =

1
2𝜇0

∫
R2
d2𝑥 (𝜓̇Δ𝜓 + 𝜓Δ𝜓̇)

= 1
𝜇0

∫
R2
d2𝑥𝜓Δ𝜓̇ + lim

𝑅→∞

1
2𝜇0

∫
𝜕𝛣𝑅(0)

(𝜓̇ ⋆ d𝜓 − 𝜓 ⋆ d𝜓̇)

= 1
𝜇0

∫
R2
d2𝑥𝜓Δ𝜓̇ + lim

𝑅→∞

𝑅
2𝜇0

∫
2𝜋

0
(𝜓̇𝜓𝑟 − 𝜓𝜓̇𝑟)d𝜃

= 1
𝜇0

∫
R2
d2𝑥𝜓Δ𝜓̇

since 𝜓, 𝜓̇ = 𝑂(𝑟−1) and 𝜓𝑟, 𝜓̇𝑟 = 𝑂(𝑟−2).
• We need to evaluate Δ𝜓̇
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Variation of the magnetostatic self-energy

Variation of the dipolar energy

• Differentiating Poisson’s equation with respect to 𝑡, we deduce that

Δ𝜓̇ = −𝜇0𝑀𝑠∇⃗ ⋅ 𝜖⃗,

• Hence

d
d𝑡
∣
𝑡=0
𝐸DDI(𝑛⃗𝑡) = −𝑀𝑠∫

R2
d2𝑥𝜓 (∇⃗ ⋅ 𝜖⃗)

=𝑀𝑠∫
R2
d2𝑥 𝜖⃗ ⋅ ∇⃗𝜓 − lim

𝑅→∞
𝑀𝑠∫

𝜕𝛣𝑅(0)
𝜓 ⋆ 𝜀

=𝑀𝑠∫
R2
d2𝑥 𝜖⃗ ⋅ ∇⃗𝜓

by Stokes’s Theorem, since 𝜀 = 𝜀1d𝑥1 + 𝜀2d𝑥2 has compact support
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Evading the Hobart–Derrick Theorem

Rescaling energy and length scales
• Let us consider an energy and length rescaling with 𝐸 = 𝐸0𝐸̂ and 𝑥 = 𝐿0𝑥̂
• Then the rescaled energy is

𝐸̂ = 𝐸̂DDI +∫
R3
{
𝐽𝐿0
2𝐸0

|d𝑛⃗|2 +
D𝐿20
𝐸0

𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗) +
𝐾𝑚𝐿

3
0

𝐸0
(1 − 𝑛2𝑧 ) +

𝑀𝑠𝐵ext𝐿
3
0

𝐸0
(1 − 𝑛𝑧)}d

3𝑥̂

• For this to be dimensionless, we choose 𝐿0 = 𝐽/D and 𝐸0 = 𝐽2/D
• Hence, the energy can be expressed in the dimensionless form

𝐸̂ = 𝐸̂DDI +∫
R3
{1
2
|d𝑛⃗|2 + 𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗) +

𝐾𝑚𝐽
D

(1 − 𝑛2𝑧 ) +
𝑀𝑠𝐵ext𝐽

D2 (1 − 𝑛𝑧)}d
3𝑥̂

≡ 𝐸̂DDI +∫
R3
{1
2
|d𝑛⃗|2 + 𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗) + 𝐾(1 − 𝑛

2
𝑧 ) + ℎ(1 − 𝑛𝑧)}d

3𝑥
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Rescaling energy and length scales
• Consider the rescaling of the magnetic potential 𝜓 = 𝜆𝜓̂
• The rescaled magnetostatic energy and Poisson equation are

𝐸̂DDI =
1
2
𝐿0𝜆

2

𝜇0𝐸0
∫

R3
𝜓̂Δ𝑥̂𝜓̂d

3𝑥̂, Δ𝑥̂𝜓̂ = −
𝜇0𝑀𝑠𝐿0

𝜆
∇⃗𝑥̂ ⋅ 𝑛⃗

• Introduce the dimensionless vacuum magnetic permeability

𝜇 =
𝜇0𝑀𝑠𝐿0

𝜆
= (

𝐿0𝜆
2

𝜇0𝐸0
)
−1

.

• Necessary magnetic potential rescaling is given by

𝜆 = D
𝑀𝑠

⇒ 𝜇 =
𝜇0𝑀

2
𝑠 𝐿0

D
=
𝜇0𝐽𝑀

2
𝑠

D2 .
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Evading the Hobart–Derrick Theorem

• The dimensionless energy and Poisson equation are

𝐸 = ∫
R2
{1
2
|d𝑛⃗|2 + 𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗) + 𝐾(1 − 𝑛

2
𝑧 ) + ℎ(1 − 𝑛𝑧) +

1
2
𝑛⃗ ⋅ ∇⃗𝜓}d2𝑥, Δ𝜓 = −𝜇∇⃗ ⋅ 𝑛⃗

• Can stable topological solitons even exist in this model?
• Derrick’s Theorem: If the energy functional 𝐸[𝑛⃗] is not stationary against spatial rescaling, then 𝑛⃗
cannot be a solution of the field equations [J. Math. Phys. 5, 1252–1254 (1964)]

• It is a non-existence theorem
• Can we evade the Derrick Theorem?
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Derrick’s theorem applied to a linear scalar field

• Consider some arbitrary scalar field Φ(𝑥⃗) with associated energy

𝐸[Φ] = ∫d𝑑𝑥 {∇⃗Φ(𝑥⃗) ⋅ ∇⃗Φ(𝑥⃗) + 𝑉(Φ(𝑥⃗))} = 𝐸2 + 𝐸0 ≥ 0

• Consider coordinate rescaling 𝑥⃗ ↦ 𝑥⃗′ = 𝜆𝑥⃗ ⇒ Φ𝜆 = Φ(𝜆𝑥⃗)
• Rescaled energy becomes

𝑒(𝜆) = 𝐸[Φ(𝜆𝑥⃗)] = ∫d𝑑𝑥′𝜆−𝑑 {∇⃗′Φ(𝑥⃗′) ⋅ ∇⃗′Φ(𝑥⃗′) 𝜆2 + 𝑉(Φ(𝑥⃗′))} = 𝜆2−𝑑𝐸2 + 𝜆
−𝑑𝐸0

• 𝑑 = 1: 𝑒(𝜆) = 𝜆𝐸2 +
1
𝜆
𝐸0 ⇒ 𝑒′(𝜆) = 𝐸2 −

1
𝜆2
𝐸0 = 0 ⇒ Stable topological solitons in 1D

• 𝑑 = 2: 𝑒(𝜆) = 𝐸2 +
1
𝜆2
𝐸0 ⇒ 𝑒′(𝜆) = − 2

𝜆3
𝐸0 = 0 ⇒ No stable topological solitons in 2D

• 𝑑 ≥ 3: 𝑒(𝜆) = 𝜆2−𝑑𝐸2 + 𝜆
−𝑑𝐸0 ⇒ 𝑒′(𝜆) = (2 − 𝑑)𝜆1−𝑑𝐸2 − 𝑑𝜆

−(𝑑+1)𝐸0 ⇒ No stable topological
solitons in 𝑑 ≥ 3
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Evading the Hobart–Derrick Theorem
• The dimensionless energy and Poisson equation are

𝐸 = ∫
R2
{1
2
|d𝑛⃗|2 + 𝑑⃗𝑖 ⋅ (𝑛⃗ × 𝜕𝑖𝑛⃗) + 𝐾(1 − 𝑛

2
𝑧 ) + ℎ(1 − 𝑛𝑧) +

1
2
𝑛⃗ ⋅ ∇⃗𝜓}d2𝑥

• Rescaled Poisson equation, under 𝑥⃗ ↦ 𝑥⃗′ = 𝜆𝑥⃗, becomes

𝜆2Δ′𝜓𝜆 = −𝜇𝜆∇′ ⋅ 𝑛⃗𝜆 = −𝜇𝜆∇′ ⋅ 𝑛⃗(𝜆𝑥⃗) = 𝜆Δ′𝜓(𝜆𝑥⃗),

• Magnetic potential scaling behavior is 𝜓𝜆(𝑥⃗) =
1
𝜆
𝜓(𝜆𝑥⃗)

• Derrick scaling

𝐸(𝜆) = 𝐸exch +
1
𝜆
𝐸DMI +

1
𝜆2

(𝐸pot + 𝐸DDI) → d𝐸
d𝜆

∣
𝜆=1

= 𝐸DMI + 2 (𝐸pot + 𝐸DDI) = 0

• Can have stable topological solitons since 𝐸DMI can be negative
• Solitons can be stabilized with DMI and DDI only, potential not required
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Numerical method

Numerical method

• Convenient to express everything in index notation

E = 1
2
(𝜕𝑗𝑛𝑖)

2
+ (𝑑⃗𝑖)𝑗𝜖𝑗𝑘𝑙𝑛𝑘𝜕𝑖𝑛𝑙 + 𝐾(1 − 𝑛

2
3) + ℎ(1 − 𝑛3) +

1
2
𝑛𝑖𝜕𝑖𝜓

• Associated Euler–Lagrange field equations are

𝛿E
𝛿𝑛𝑖

= −𝜕𝑗𝜕𝑗𝑛𝑖 + 2(𝑑⃗𝑎)𝑏𝜖𝑏𝑖𝑗𝜕𝑎𝑛𝑗 − 𝛿
3
𝑖 (2𝐾𝑛3 + ℎ) + 𝜕𝑖𝜓 = 0

• Magnetic skyrmions are are local minimizers of the energy functional
⇒ Solutions of the Euler–Lagrange field equations and satisfy the Derrick scaling constraint

𝐸DMI + 2 (𝐸pot + 𝐸DDI) = 0
• We choose to numerically relax the energy using an accelerated gradient descent based method
with flow arresting criteria, 𝜕𝑡𝑡𝑛⃗ = −grad𝐸(𝑛⃗) [J. High Energ. Phys. 07, 184 (2020)]
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Numerical method

• Inclusion of the DDI introduces non-locality into the minimization problem
• During every iteration of the magnetization minimization, 𝜓must solve Poisson’s equation Δ𝜓 = 𝜇𝜌
with source 𝜌 = −(∇⃗ ⋅ 𝑛⃗)

• This can be approached by reformulating the problem as an unconstrained optimization problem:
minimize the functional

𝐹(𝜓) = 1
2
‖d𝜓‖2𝐿2 + 𝜇∫

R2
d2𝑥 (∇⃗ ⋅ 𝑛⃗) 𝜓

with respect to 𝜓, where the magnetization 𝑛⃗ is fixed
• We will use a non-linear conjugate gradient method with a line search strategy to solve this
unconstrained problem, based on method in [J. High Energ. Phys. 06, 116 (2024)]
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Results

Isolated magnetic skyrmions

• Before implementing the numerical algorithm, we can gain some intuition by computing the
divergence of the magnetization ansätze

𝑛⃗Bloch = (− sin𝑓(𝑟) sin 𝜃, sin𝑓(𝑟) cos 𝜃, cos𝑓(𝑟)) ⇒ ∇⃗ ⋅ 𝑛⃗Bloch = 0

𝑛⃗Néel = (sin𝑓(𝑟) cos 𝜃, sin𝑓(𝑟) sin 𝜃, cos𝑓(𝑟)) ⇒ ∇⃗ ⋅ 𝑛⃗Néel =
d𝑓
d𝑟
cos𝑓(𝑟) + 1

𝑟
sin𝑓(𝑟)

𝑛⃗Heusler = (− sin𝑓(𝑟) sin 𝜃, − sin𝑓(𝑟) cos 𝜃, cos𝑓(𝑟)) ⇒ ∇⃗ ⋅ 𝑛⃗Heusler = (1
𝑟
sin𝑓(𝑟) −

d𝑓
d𝑟
cos𝑓(𝑟)) sin 2𝜃

• Dipolar interaction has no effect on Bloch skyrmions as the Bloch ansatz is solenoidal
• However, it does have an effect on Néel skyrmions and Heusler antiskyrmions
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Results

Magnetic potential of isolated magnetic skyrmions

(a) Rashba DMI (Néel skyrmions) (b) Heusler DMI (antiskyrmions)
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Results

Magnetic skyrmion crystals

• Next, we investigate the DDI effect on magnetically ordered crystals
• In absence of DDI, optimal crystalline structure is hexagonal
• Restrict geometry to be equianharmonic⇒ rectangular unit cell of size 𝐿 × √3𝐿
• Vary the lattice parameter 𝐿
• Initial configuration consists of two separated (anti)skyrmions
• Carried out using a product ansatz 𝑢 = 𝑢1 + 𝑢2 in the C𝑃1 formalism (𝑆2 and C𝑃1 are diffeomorphic)
• In all cases, as 𝐿 → ∞, the energy per unit topological charge approaches that of the isolated
single magnetic skyrmion
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Results

Magnetic skyrmion crystals

• For our parameter set, interaction energy is repulsive without DDI
⇒ Negative binding energy 𝐸bind = 2𝐸1 − 𝐸latt < 0
• Skyrmions prefer to be infinitely separated
• Remains true for Dresselhaus and Rashba DMI related skyrmions with DDI
• Heusler antiskyrmions have positive binding energy⇒ finite optimal lattice size
• Heusler lattice symmetry also changes from hexagonal to square
! DDI has noticeable effect on antiskyrmions in bulk of Heusler compounds
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Conclusion

Conclusion

• We have shown how to include the magnetostatic self-energy and how to compute the
back-reaction

• Crystalline symmetry changed in Heusler type compounds [MRS Bull. 47, 600 (2022)]
• Method can be extended to 3d chiral magnets (B.C.s require some care though)
• If considering thin films, stray field outside magnet needs to be determined [SIAM J. Math. Anal.
52, 3580-3599 (2020)]

• How does the dipolar interaction effect skyrmion dynamics?
• Can our method be generalized to other systems such as skyrmions in liquid crystals? [Phys. Rev.
E 90, 042502 (2014)]
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