iy

Sy,
EKTHY

VETENSKAP
28 OCH KONST 2%

Bt

Magnetostatic self-interaction effect on bulk
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Motivation

* The magnetization in a ferromagnet has a dipolar moment associated with it
* This induces an internal demagnetizing magnetic field
* In turn, this generates a magnetostatic self-energy
* Want to find topological solitons (static energy minimizers)
= There is back-reaction from the self-induced magnetic field on the magnetization
* How can this back-reaction be determined?
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Ising vs Heisenberg
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Heisenberg magnet

* Consider the Heisenberg model of a system of spins §l that are localised on the sites of a
d-dimensional lattice:

J ifz,j are neighbours

H,=->J.S8-S, J. =
7 T 7|0 else

* Mean field approximation: a proper dynamical variable is the expectation value of the spins, i.e.
the unit magnetization 7 € S* c R
* Heisenberg Hamiltonian becomes

J

> ->
HH ==/ Z B Pivaz?
i,]

where //ZZ’;. is the vector connecting a lattice site 7 with its neighbouring sites 7 + an
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Heisenberg magnet

* Taylor expansion of 7. for small lattice constant « gives
7

* Ignoring the constant 7, - 7, = 1, the Heisenberg Hamiltonian in the continuum limit is

]42 -> -> - ]dz_d a4 A
H, ~—— Zn Y E 7] = 5 Lz dx (n : 9]%n)

* Integration by parts gives us the static energy of the O(3) sigma model

2—d
A /ddx(a.z-a.ﬁ), o=l
- i

exch [ 2

Paul Leask KTH
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Dzyaloshinksii—Moriya interaction
* At the lattice level, the DMI (an antisymmetric exchange interaction) is [Sov. Phys. JETP 19, 960

(1964)]
Hy=DY d-(ix n)
o] ’

* Taylor expanding again gives

DMI in the continuum limit is

Hy=Day d-(3,xi) — Fpulil=Da™ [ a3 d-(7x27)
-~

R4 i
Topological spin textures arise due to competition between Heisenberg exchange interaction and
DMI

Heisenberg exchange energy promotes parallel alignment of spins whereas DMI favors
non-collinear alignment of spins (spin canting)
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Continuum energy

* The energy in the continuum limit (ford = 3)is E = E
95, 178-182 (1989)]

+ Epy + E o Where [Zh. Eksp. Teor. Fiz.

exch

* Skyrmions are topological solitons in this model [e.g. New J. Phys. 18, 065003 (2016)]
* These are static solutions to the Euler-Lagrange field equations
* Chiral magnet can also be derived from string theory [J. High Energ. Phys. 11, 212 (2023)]

Paul Leask KTH 9/47



by

ege&%@a
KTH%

VETENSKAP
28 OCH KONST 2%

LI

Magnetic skyrmions



EEEEEEEEE

Topological magnetic spin textures

* Ground state configuration found by minimizing £ = ;ZT =(0,0,1)

=
=
pot Z vac

* Finite (static) energy requires 7(X) — 7, as |x| — oo

)
— One-point compactification of space R* U {co} = §*
* Magnetization 7 is effectively a based map 7 : §* — §*
* Gives rise to a non-trivial homotopy group , (5%) = Z
* Configuration space is seen to consist of disconnected manifolds,
M= M,
ieZ

* Magnetization configurations are identified by the topological degree
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Magnetic vortices

* Magnetic vortices are minimizers of the static energy functional
Consider the radially symmetric ansatz

n(r,0) = (sin f(r) cos g, sin f(r) sind,cos f(r))

Reduces problem to solving a non-linear ODE in £ (r)

Profile function f(r) decreases monotonically with boundary conditions f(0) = kz and f () = 0
This gives us 7(r = 0) = ﬁi and 7z(r = o) =z
* Gives rise to kz-vortices

k =1 yields a z-vortex, more commonly known as a Néel skyrmion with deg(z) = -1

k = 2 yields a 2z-vortex, known as skyrmionium with deg() = 0 [J. Magn. Magn. Mater. 195,
182-192 (1999)]

1
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Magnetic vortices

(a) Néel skyrmion (b) Skyrmionium

Figure: The magnetization 72 = (1, n,,7,) € S? is coloured using the Runge colour sphere. Spin-up states ;ZT
white, whereas spin-down states ﬁi = (0,0,~-1) are black. The hue is determined by the phase arg(», + in,).

Paul Leask KTH 13/47
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Magnetic skyrmions

* Other radially symmetric ansatze can be considered
= Different vortex/skyrmion solutions
* Skyrmion type is actually determined by the DMI term used

on, 7.
* We consider three different DMI terms: [Lifshitz invariants Af-f) =n—=- nj.%]
Y Y
| | Dresselhaus | Rashba | Heusler
{d,d)} {(-¢.,2} {¢,-2} {&,-2}
DM A0 — A® A — A0 AD) L A®
Xz Y2 Zx )z Xz Yz
Skyrmion Bloch Néel Antiskyrmion
deg(z) -1 -1 +1

sin f(r) cos @ sin f(r) sing —sin f(r) cos ¢
cos f(r) cos f(r) cos f(r)

>
n

(— sin f(r) sin 6’) (sinf(r) cos 5) (— sin f(r) sin 5’)
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Magnetostatic problem

* The magnetization behaves as a magnetic dipole
* This induces an internal magnetic field (demagnetizing field)
= Generates a magnetostatic self-energy
* Computing this energy and the back-reaction on the magnetization is difficult
* Dzyaloshinksii—Moriya interaction assumed to be more significant

* Stripe domain structures in ordinary ferromagnets with no interfacial DMI were studied
analytically [Phys. Rev. B 48, 10335 (1993)]

* Analytic investigation including dipolar interactions for Dresselhaus DMI with Néel type
modulations [Phys. Rev. Lett. 105, 197202 (2010)]

* Numerical study of dipolar interaction with Monte-Carlo simulations [J. Magn. Magn. Mater 324,
2171 (2012)]
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%}KTH?} Magnetostatic self-energy and its back-reaction

Self-induced magnetic field

* The magnetic field induced by an isolated dipole of moment 7 at 0 is

* This can be expressed as the gradient of a magnetic potential v : R> — R, that is,

B=-Vy, y-= n%%(l)

4y

* Consider now a continuous distribution of magnetic dipole density 7 : QO — R*, where Q < R% is
some domain. The magnetic field it induces, at a point % € R?, is given by integrating the field

induced at x by 7:(y) at y € Q over j € Q:
() - (£ - 7)
(% =)
{@ %= JI? g

_’ —> ‘/.d?’_’

Paul Leask KTH 18/47
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The magnetic potential
* Again, this is the gradient of the magnetic potential y : O — R,

> > = 1
R
* We now note that the Green’s functions for the Laplacian A = -V*on Q c R’ is
1

G(#7) = —=—
) E

= A G(%,5) =0(x-7)

* The Laplacian of the potential is

AY(E) = -, /Q &5 {G) - ¥, [4,66E )]}
= -1y [ 7 -5 [9,-76)])
= - 1,V - (%)
Paul Leask KTH
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Interaction energy of a distribution of magnetic dipoles
* Therefore, we see that the magnetic potential  satisfies Poisson’s equation
Ay =pyp, p==(V-7)

* The magnetic field induced by the dipole distribution 7 coincides, therefore, with the electric field
induced by the charge distribution - (V - 7) [Phys. Rev. B 20, 33 (1979)]

Can think of — (? : 771) as “electric charge density”

_>

The interaction energy of a pair of magnetic dipoles 7", %®, is =" - B?), where B? is the
magnetic field induced by 7 at the position of 77"

Hence, the total dipole-dipole interaction energy of a continuous dipole density distribution is

-y ot
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DDI energy = electrostatic self-energy

* It is useful to rewrite the DDI energy as a functional of the magnetic potential y:

* We will use this formula only in situations where the boundary conditions ensure that the
boundary term vanishes. In this case, £, coincides with the “electrostatic” self-energy of the
“charge” distribution —(V - )

* To see this, we use the general identity yA¢ = Vy - Vo —

(1/%5) and the divergence theorem to
express the DDI energy as

V.
= = [ P39yl - L/d
001~ 2 o 22 Jo

Paul Leask KTH
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Interaction energy summary

* Can compute the electrostatic self-energy in a few ways, most computationally expensive is:

1 (3@ G S o | L (y (x ) N

* Better to determine the magnetic vector potential y : O — R first, such that

Eppy = L /d% AB”(’C))

* You can choose to do it non-locally (computationally expensive)

@) = o [ &5 60 )

* This non-locality can be avoided by instead introducing the constraint that the magnetic potential
must satisfy the Poisson equation . 5 L.
' g A Y (&) = =41y (9, ()

Paul Leask KTH 22/47
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Interaction energy summary

* The magnetization 7 behaves like a magnetic dipole moment
= Induces an internal demagnetizing magnetic field B

* Want to include the magnetostatic self-energy &, = |B|?/2

= Minimization problem — constrained minimization problem &, = j;kA;k, where Ay = —ﬂov

* Also want to determine the back-reaction of 3 on 7

= Need to compute the variation of £, w.rt. m

DDI

-

m
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nslation invariant solutions

Case of interest: dipole-dipole interaction energy of a chiral ferromagnet in a translation invariant
configuration

We impose translation invariance in the direction ¢ = (0,0, 1), so z is independent of x,

Consider fields 7 : R* — S* which have compact support in the sense that there exists R, > 0such
that, forall » :== [(x, x,) | = R, 7(x}, x,) = féT

Since 7 is translation invariant, total dipole interaction energy either vanishes (for example, if 7 is
constant) or diverges

The energy per unit length (in the ¢ direction) may be finite however

Coincides with the total energy of the slab Q = R* x [0, 1], which we compute as the limit of the
energy of the thick disk Q, = {¥ : x] +x; <R’ 0<x, <1}asR —
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Boundary conditions

* Boundary term d5- (y7%) vanishes identically for all R > R,

* Hence
on

E dPxyAy, Ay = Wi
oM, 0x, 3x2

= 2/«40 R

Consider the large » behaviour of ¢ : R* — R
Any solution of the Poisson equation Ay = » on R* has a multipole expansion

q -1 2
= ——]| 0] , = d
14 o ogr+0(r ), ¢q L X p

* In general, such functions are logarithmically unbounded

* Inour case p is (proportional to) the divergence of the in-plane field (z,,7,), so 4 = 0 by the
divergence theorem

= yis (at least) 1/ localized
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Variation of the dipolar energy

* Let 7, be a smooth variation of 7z = 7, and define ¢ = 9.,|,_,
* Denote y; the associated solution of Ay, = MV n, decaying to 0 at infinity, and ¥ = AA

=0
* The variation of £, induced by 7, is t
i Epp (7,) = e / d’x (%A% + ?AB})
df =0 2‘6(0 R2
1 .
Pxy Ay + lim —/ y*dy—y*dy)
/"o R? H=0e 1“
- L [ Pryay + lim i/ Wy — y.)d6
‘uo R2 R—0 2#0 7 7
= L d?x ¢A¢
1“() R2

since y, ¥ = O("") and ¢, ¢, = O(r™2).
* We need to evaluate Ay
Paul Leask KTH 28/47
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fKTH@%% Variation of the magnetostatic self-energy

Variation of the dipolar energy

* Differentiating Poisson’s equation with respect to 7, we deduce that
Ay =~ MV -

* Hence

d -> = ->
O Epp,(72,) = —M/ dzx;k(v-e)
t /=0 R2
=M | d*xé Vy - I|mM/ Y oxe

JB

R—c
R2 N

=M d’x2- 6%
RZ

by Stokes’s Theorem, since ¢ = ¢ dx, + ¢,dx, has compact support

Paul Leask KTH
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ﬂf&KTHQ%% Evading the Hobart—Derrick Theorem

Rescaling energy and length scales

* Let us consider an energy and length rescaling with F£ = EOE and x = L x
* Then the rescaled energy is

N JL DL . K L MB_ L
E:EDD|+/ L P = O i p e U o e s By ol
R | 2E, g, l A : oA ¢

* For this to be dimensionless, we choose L, = //D and E, = J*/D
* Hence, the energy can be expressed in the dimensionless form

K,/ MB e/

A_A 1 >12 = > =~ 2 3 A
E‘EDD|+/F;3{£|OI”| +dz"(”xal'”)+?(1—”z)+ 2 (1—nz)}dx

_ ADD|+f {%|dﬁ|2+d:-(ﬁxalﬁ)+K(1—n§)+h(1—nz)}d3x
R3

Paul Leask KTH
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fKTHQ%% Evading the Hobart—Derrick Theorem

Rescaling energy and length scales

* Consider the rescaling of the magnetic potential y = l;}
* The rescaled magnetostatic energy and Poisson equation are

1L 2
21“0 0

[uML

>

E

DDI ~

* Introduce the dimensionless vacuum magnetic permeability
#oML, (L0)L2 )_1
‘LL = = .
A ok

* Necessary magnetic potential rescaling is given by
D p MLy M
D D2

Paul Leask KTH
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Evading the Hobart—Derrick Theorem

The dimensionless energy and Poisson equation are

o= {%|dﬁ|2 vd - (Ax27) + K(1=n2) + h(1-n) +
RZ

DO [ =

Can stable topological solitons even exist in this model?

Derrick’s Theorem: If the energy functional £[%] is not stationary against spatial rescaling, then 7
cannot be a solution of the field equations [J. Math. Phys. 5, 1252—1254 (1964)]

It is a non-existence theorem
* Can we evade the Derrick Theorem?
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Derrick's theorem applied to a linear scalar field
* Consider some arbitrary scalar field ®(x) with associated energy

- fddx (Y0(%) - VOR) + V(@) = E, + E, 2 0

Consider coordinate rescaling ¥ —» ' = 1% = @, = ®(I%)
Rescaled energy becomes

e()) = E[®(1%)] = f ATV OF) - VOR) 22+ V(D(F))} = 229E, + 27E,

*d=1:¢d) =1E + lE = () =E - R—ZEO =0 = Stable topological solitons in 1D
*d=2¢el)=E + ;Eo = ()= —;EO =0 = No stable topological solitons in 2D
*d>3e(d) =2> dE +1E, = () =@2-d)E -dr“"VE = No stable topological
solitonsind >
Paul Leask KTH
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fKTHQ%% Evading the Hobart—Derrick Theorem

Evading the Hobart—Derrick Theorem

* The dimensionless energy and Poisson equation are

e {%|d7z|2 vd - (ixom) +K(L-n2) +h(1-n)+
RZ

7 - ?%} d?x

N | —

Rescaled Poisson equation, under x — %' = 1%, becomes

PNy =~V iy = —pdV - 5(AF) = ANy (AR),

Magnetic potential scaling behavior is y; (%) = %;k(/b'c’)
Derrick scaling

1 1

df
E(A) = Egyen + EEDMI VB (Epot +EDDI) T . = Epm +2 (Epot . EDDI) =0

—

Can have stable topological solitons since £, can be negative

Solitons can be stabilized with DMI and DDI only, potential not required
Paul Leask KTH 35/47
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Numerical method
* Convenient to express everything in index notation
€=2(an) +(d) e, mon+K(1-n2)+h 1,9
=3 ( jnl.) + ( z')jéjldnk 7, + K(1=n5) + h(1—ny) + o ¥
* Associated Euler—Lagrange field equations are

+2(d),6,0m, =3 (2Kny +h) + 0y =0

Il
|
>
>
S
+

* Magnetic skyrmions are are local minimizers of the energy functional
= Solutions of the Euler—Lagrange field equations and satisfy the Derrick scaling constraint

Epp +2 (Epot +EDDI) 0

* We choose to numerically relax the energy using an accelerated gradient descent based method
with flow arresting criteria, 9, % = —grad E(#) [J. High Energ. Phys. 07, 184 (2020)]

Paul Leask KTH
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Numerical method

* Inclusion of the DDI introduces non-locality into the minimization problem

* During every iteration of the magnetization minimization, ¥ must solve Poisson’s equation Ay = up
with source p = —(V - 7t)

* This can be approached by reformulating the problem as an unconstrained optimization problem:
minimize the functional

Fp) = 5lopl+p [ ox(9-3)y

with respect to ¢, where the magnetization 7 is fixed

* We will use a non-linear conjugate gradient method with a line search strategy to solve this
unconstrained problem, based on method in [J. High Energ. Phys. 06, 116 (2024)]
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Isolated magnetic skyrmions

* Before implementing the numerical algorithm, we can gain some intuition by computing the
divergence of the magnetization ansatze

goeh = (—SINf(r) sing,sin f(r)cosd,cos f(r)) = Vg, =0
S d
nee = (SINf(r)cosd,sin f(r)sind,cos f(r)) = Vi, = df cos £ (r) 1 sinf(r)
s
S d
Rpouster = (—SINf(r) sing,—sin f(r)cosd,cos f(r)) = V- i iqer = smf fcosf sin24

* Dipolar interaction has no effect on Bloch skyrmions as the Bloch ansatz is solenoidal
* However, it does have an effect on Néel skyrmions and Heusler antiskyrmions

Paul Leask KTH 40/47
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Magnetic potential of isolated magnetic skyrmions

Y(@1, @) (T/nm’) W(@1, @) (T/nm’) x10°
90 90 15
80 80 ]
70 70
12 105
60 60
25 . 5. l,
=N =N
40 40
105
30 30
20 20 -
10 10 s
0 0
0 20 40 60 80 10 0 20 40 60 80
2 (nm) x (nm)
(a) Rashba DMI (Néel skyrmions) (b) Heusler DMI (antiskyrmions)
Paul Leask KTH 41/47



EEEEEEEEE

Magnetic skyrmion crystals

* Next, we investigate the DDI effect on magnetically ordered crystals

* In absence of DDI, optimal crystalline structure is hexagonal

* Restrict geometry to be equianharmonic = rectangular unit cell of size L x /3L

* Vary the lattice parameter L

* Initial configuration consists of two separated (anti)skyrmions

* Carried out using a product ansatz « = #, + «, in the CP! formalism (5% and CP! are diffeomorphic)

* In all cases, as L — o, the energy per unit topological charge approaches that of the isolated
single magnetic skyrmion
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Magnetic skyrmion crystals

* For our parameter set, interaction energy is repulsive without DDI
= Negative binding energy £, =2F - E_,, <0
* Skyrmions prefer to be infinitely separated
* Remains true for Dresselhaus and Rashba DMI related skyrmions with DDI
* Heusler antiskyrmions have positive binding energy = finite optimal lattice size
* Heusler lattice symmetry also changes from hexagonal to square
I DDI has noticeable effect on antiskyrmions in bulk of Heusler compounds
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Conclusion

* We have shown how to include the magnetostatic self-energy and how to compute the
back-reaction

* Crystalline symmetry changed in Heusler type compounds [MRS Bull. 47, 600 (2022)]
* Method can be extended to 3d chiral magnets (B.C.s require some care though)

* If considering thin films, stray field outside magnet needs to be determined [SIAM J. Math. Anal.
52, 3580-3599 (2020)]

* How does the dipolar interaction effect skyrmion dynamics?

* Can our method be generalized to other systems such as skyrmions in liquid crystals? [Phys. Rev.
E 90, 042502 (2014)]
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