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Motivation

* Main aim: Compute acceptable values of the compression modulus of dense nuclear matter from
variants/extensions of the Skyrme model

* Compression modulus related to binding energies of nuclei

* Generalized Skyrme models have too high B.E. = too large compression modulus

* High B.E. remedied by inclusion of vector mesons

* Ground state of dense nuclear matter has a crystalline structure in the classical approximation

= We need to understand phases and phase transitions of nuclear matter within vector meson
variants of the Skyrme model
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Compressibility of dense nuclear matter

* Consider isospin symmetric nuclear matter at zero temperature with baryon density », = B/

* The energy per baryon of such matter can be approximated about the nuclear saturation density
n, by use of a power series expansion [Prog. Part. Nucl. Phys. 101, 55 (2018)]:

2 2
1, (g —n) Iny PE
E(n,)|B = E, + =K,.——— + O ((n, = n,)?), K,=——
B 0 2 0 9%% B 0 ) 0 B 8n§ .
B—i’l

0
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Compressibility of dense nuclear matter

* Consider isospin symmetric nuclear matter at zero temperature with baryon density », = B/

* The energy per baryon of such matter can be approximated about the nuclear saturation density
n, by use of a power series expansion [Prog. Part. Nucl. Phys. 101, 55 (2018)]:

(n, —n)* I 32
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1
E(n,)/B=E + =K
b Vo Ing B 8@% .
B—n

0

* n, is defined to be the nuclear density s.t. (0F)/(d7,) |nB:n0 =0
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Compressibility of dense nuclear matter

* Consider isospin symmetric nuclear matter at zero temperature with baryon density », = B/

* The energy per baryon of such matter can be approximated about the nuclear saturation density
n, by use of a power series expansion [Prog. Part. Nucl. Phys. 101, 55 (2018)]:

(nB - no)z

2
Mo

—n)3 -
rOl ) Ko gg

1
E(ng)[B = E, + ZKO 5 0

* n, is defined to be the nuclear density s.t. (0E)/(dn,)| _ =0
B 0
* E, = E(n,)/B is the energy per baryon of symmetric nuclear matter at the saturation density

* K, is the compression modulus, a fundamental quantity in nuclear physics: a measure of nuclear
resistance under pressure at the saturation point »,

* Imposes significant constraints on the nuclear matter equation of state
* Fudicial values: £, ~ 922 MeV and K = 240 + 20MeV = K /E, = 0.26
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How to compute £, K, from skyrmions?

* Approximate dense nuclear matter as a large extended crystalline configuration composed of NV
unit cells

Each unit cell has baryon number B__, and volume
Baryon density is simply », = NB__,/(NV ;)
In the thermodynamic limit N' — <, E(n,) /B — E__, /B

* E_,, is just the classical static mass of a skyrmion crystal — £ = E__, (n,) /B,

Can consider E__ (n,) by varying the baryon density 7, or, equivalently, the unit cell volume I,
* The compression modulus is thus

cell

- BceII/VceII

- 971(2) *E

K, =

2 12
_ 9VO 0 Ecell
Bcell ach:ell

cell

Bcell ang

V=V

B~ 70 cell™"0
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fKTHQ%% Phases of skyrmion matter

Generalized Skyrme model

* Effective Lagrangian of mesonic fields: ¢ : (41, ¢) — (SU(N,), h), N,

* Left-invariant Maurer-Cartan form x € Q'(SU(2)) ® s11(2)
* Associated two form Q € Q*(SU(2)) ® su(2), Q(X,Y) = [pc(x)
* Normalized volume form = € Q*(SU(2)), Z(X, Y, Z) —h(p(X
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* Effective Lagrangian of mesonic fields: ¢ : (41, ¢) — (SU(N,), h), N,
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* Left-invariant Maurer-Cartan form x € Q'(SU(2)) ® s11(2)
* Associated two form Q € Q*(SU(2)) ® su(2), Q(X,Y) = [pc(x)
* Normalized volume form = € Q*(SU(2)), Z(X, Y, Z) —h(p(X
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Generalized Skyrme model

* Effective Lagrangian of mesonic fields: ¢ : (41, ¢) — (SU(N,), h), N,

/¢ o =2 (u,d-quarks)

* Left-invariant Maurer-Cartan form x € Q'(SU(2)) ® s11(2)
* Associated two form Q € Q*(SU(2)) ® su(2), Q(X,Y) = [#(x), ()]
* Normalized volume form = € Q*(SU(2)), Z(X, Y, Z) v h(u(X), Q(Y,2))

* Generalized Skyrme model energy

1, . .
E(%g)=f {|d§0|2+2|¢ Q|2+Vogp+cé|¢ ;|2} Volg

M
* Exhibits short range «-meson-like repulsion while still describing scalar meson effects
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* Effective Lagrangian of mesonic fields: ¢ : (41, ¢) — (SU(N,), h), N,

/¢ o =2 (u,d-quarks)

* Left-invariant Maurer-Cartan form x € Q'(SU(2)) ® s11(2)
* Associated two form Q € Q*(SU(2)) ® su(2), Q(X,Y) = [#(x), ()]
* Normalized volume form = € Q*(SU(2)), Z(X, Y, Z) v h(u(X), Q(Y,2))

* Generalized Skyrme model energy

1, . .
E(%g)=f {|d§0|2+2|¢ Q|2+Vogp+cé|¢ ;|2} Volg
M

* Exhibits short range «-meson-like repulsion while still describing scalar meson effects
* Baryon d.o.f. not explicitly visible — topology: Homotopy invariant «<» Baryon number
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Generalized Skyrme model

* Effective Lagrangian of mesonic fields: ¢ : (41, ¢) — (SU(N,), h), N,

/¢ o =2 (u,d-quarks)

* Left-invariant Maurer-Cartan form x € Q'(SU(2)) ® s11(2)
* Associated two form Q € Q*(SU(2)) ® su(2), Q(X,Y) = [#(x), ()]
* Normalized volume form = € ©*(SU(2)), £(X, Y, 2) = 75h(u(X), Q(Y, 2))

Generalized Skyrme model energy

E(@,g)=/ﬂ;{|d§0|2 | QP +Vep+c|p H|2}vol

Exhibits short range w-meson-like repulsion while still describing scalar meson effects
Baryon d.o.f. not explicitly visible — topology: Homotopy invariant «<» Baryon number

B:/Q*E
M

Baryons realized as non-perturbative excitations of the pions = solutions of the Euler—Lagrange
field equations - topological solitons (skyrmions)
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* Consider the base space to be the 3-torus

(R3/A,gEuc), A= {anl +n, X, +n, X, in € Z}
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Skyrmion crystals

* Consider the base space to be the 3-torus
(RB/A,gEUC), /i = {”1)?1 + nz)?z + n3)?3 tn, € Z}

* Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism (with
T = R}/Z%)

F:(T3,g)—>(R3/A,gEUC), x X, +xX +xX
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Skyrmion crystals

* Consider the base space to be the 3-torus
(RP/A,geo), A= {nl)?l +m, X, + n3)?3 in, € Z}
* Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism (with
T3 =R%/23)
F:(Tg) — (RN ge,o)r X +x,X +x.X,

3

>

* The metric on T° is the pullback ¢ = F'g. = gl,].dxl'dxf, g =% )?J
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* Consider the base space to be the 3-torus

(RB/A,gEUC), A= {anl +n, X, +n, X, in € Z}

Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism (with
T = R}/Z%)

> > >

F:(T3,g)—>(R3/A,gEUC), 2, X, + X +x,X,

>

The metric on T° is the pullback ¢ = F'gg, . = g, dx'dv/, g, = X, -

\.R¢

(T°,g) is equivalent to (R*/A, g¢ )
* Vary metric ¢ with g, = g, < vary lattice A with Aj = A
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fKTHQ%% Phases of skyrmion matter

Skyrmion crystals

* Consider the base space to be the 3-torus

(RB/A,gEUC), A= {anl +n, X, +n, X, in € Z}

Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism (with
T = R}/Z%)

> > >

F:(T3,g)—>(R3/A,gEUC), 2, X, +2,X +x,X

>

The metric on T° is the pullback ¢ = F'gg, . = g, dx'dv/, g, = X, -

\.k“

(T°,g) is equivalent to (R*/A, g¢ )
* Vary metric ¢ with g, = F"g. < vary lattice A with A/ = A
* Energy minimized over all variations of ¢ « optimal period lattice A
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Skyrmion crystals

* Given a smooth one-parameter family of variations (g, ¢ ), skyrmion crystals are critical points of
the energy £(p, ¢), that is solutions of

d
EE(Q(’&)

= l} d3x\/§ (CDA (@g)@ + ‘S;.].(@,g)gklg]./egll-) 0

s=0
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* S(p,g) € T(@*T"T?) is the stress tensor and @ € I'(p~'7"SU(2)) the tension field of ¢

* The stress tensor for the 50246-model is found to be
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Skyrmion crystals

* Given a smooth one-parameter family of variations (g, ¢ ), skyrmion crystals are critical points of

the energy £(p, ¢), that is solutions of

d | .y
SE@.g)| = [ g (0008, + S, (0.05,8"") =0
T

s=0

* S(p,g) € T(@*T"T?) is the stress tensor and @ € I'(p~'7"SU(2)) the tension field of ¢

* The stress tensor for the 50246-model is found to be

5(p.9) :5(|d¢|2+zl¢ QP +Vep-¢lp :I"‘)g— (;D h=79"Q-p Q)

* Phases of skyrmion matter < fixed baryon density », variations of £(g, ¢)

. . . . . . g . 1 kl
VOlg is required to be invariant under variations ¢ of the metric = .5, — 5, - @Skzg g

a
Paul Leask SIG XII

11/42



fKTHQ%% Phases of skyrmion matter

EEEEEEEEE

Summary of [J. Math. Phys. 64, 103503 (2023)]

* To determine crystalline phases, we need to compute the stress tensor

Paul Leask SIGXII 12/42



EEEEEEEEE

Summary of [J. Math. Phys. 64, 103503 (2023)]

* To determine crystalline phases, we need to compute the stress tensor

* Forfixed L, -field ¢, there always exists a critical point of £(g, ¢) w.r.t. variations of ¢ and it is in

fact a unique c.p. (generalizes to £ ,, . -model)



EEEEEEEEE

Summary of [J. Math. Phys. 64, 103503 (2023)]

* To determine crystalline phases, we need to compute the stress tensor

* Forfixed L, -field ¢, there always exists a critical point of £(g, ¢) w.r.t. variations of ¢ and it is in
fact a unique c.p. (generalizes to £ ,, . -model)

* Four crystals were found with B, = 4:the ¢, ,, 0, 9., @nd @ e CTYStalS



EEEEEEEEE

Summary of [J. Math. Phys. 64, 103503 (2023)]

To determine crystalline phases, we need to compute the stress tensor

For fixed L, -field ¢, there always exists a critical point of £(g, ¢) w.r.t. variations of ¢ and it is in
fact a unique c.p. (generalizes to £ ,, . -model)

Four crystals were found with B, = 4:the ¢, ,, 0, @i, @D @ e CTYStEIS

From Py s the other three crystals can be constructed by applying a chiral SO(4) transformation
Q € SO(4), such that ¢ = Qgp, ), and minimizing £(p, g) w.rt. variations of ¢ and ¢



gKTHQ%% Phases of skyrmion matter

EEEEEEEEE

Summary of [J. Math. Phys. 64, 103503 (2023)]

To determine crystalline phases, we need to compute the stress tensor

For fixed L, -field ¢, there always exists a critical point of £(g, ¢) w.r.t. variations of ¢ and it is in
fact a unique c.p. (generalizes to £ ,, . -model)

Four crystals were found with B, = 4:the ¢, ,, 0, @i, @D @ e CTYStEIS
From Py /3 the other three crystals can be constructed by applying a chiral SO(4) transformation

Q € SO(4), such that ¢ = Qgpl/z, and minimizing £(g, ¢) w.r.t. variations of ¢ and ¢
* These are

47 *

0elid ((0, 1, 1,1)/,/5)) ((o, 0,0, 1))’ ((0, 0,1, 1)/\/5)

N ————

Qa Qmultiwall Qchain
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gKTHQ%% Phases of skyrmion matter

Summary of [J. Math. Phys. 64, 103503 (2023)]

* To determine crystalline phases, we need to compute the stress tensor

* Forfixed L, -field ¢, there always exists a critical point of £(g, ¢) w.r.t. variations of ¢ and it is in
fact a unique c.p. (generalizes to £ ,, . -model)

* Four crystals were found with B, = 4:the ¢, ,, 0, 9., @nd @ e CTYStalS
* From Py /3 the other three crystals can be constructed by applying a chiral SO(4) transformation

Q € SO(4), such that ¢ = Qgpl/z, and minimizing £(g, ¢) w.r.t. variations of ¢ and ¢
* These are

*

N ————

Qa Qmultiwall Qchain

0clld, ((0, 1, 1;1)/\/5), ((o, 0,0, 1))’ ((0, 0, 1;1)/‘/5)

* Related to symmetric scattering states of the B = 4 «-particle [Phys. Lett. B 391, 150-156 (1997)]
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Heuristic approach: K from scaling the cubic lattice of half-skyrmions

* Let g, : R> xR — S° be a one-parameter variation of ¢ s.t. Do =P
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Heuristic approach: K from scaling the cubic lattice of half-skyrmions

Let ¢, : R® xR — §° be a one-parameter variation of p st. ¢, = ¢
This has infinitesimal generator d,¢,|,_, € [(¢™'7'S”)

Explicitly, consider the spatial rescaling x — ¢*x, then @, = @(e’lx)

The rescaled massless £, static energy functional is then

A -1
E =E,[p] = E, + ¢ E,
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Let ¢, : R® xR — §° be a one-parameter variation of p st. ¢, = ¢
This has infinitesimal generator d,¢,|,_, € [(¢™'7'S”)

Explicitly, consider the spatial rescaling x — ¢*x, then @, = @(e’lx)

The rescaled massless £, static energy functional is then

A -1
E =E,[p] = E, + ¢ E,

Global £,,-energy minimizing crystal is the cubic lattice of half-skyrmions iy = ¢(L1/z)

The rescaled half-crystal configuration o(¢*L, ,,) approximates the true minimizer at volume

V = 63’1[,?/2 well for small 1

1/2



FKTHS® Compression modulus problem in the Skyrme
Ruorg  model
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K, from the cubic lattice of half-skyrmions

* Can estimate the compression modulus by scaling

K= B E oL, )] = 2 (Blpy + Bleya)) = &
O_dezl_o 24P\ Ly -3 2 [P1pd + E4LPy ) ) = Ly
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FKTHS® Compression modulus problem in the Skyrme
Ruorg  model
s

K, from the cubic lattice of half-skyrmions

* Can estimate the compression modulus by scaling

1

E24[¢(€/1L1/2)] = (Ez[%/z] +E4[¢1/2]) = E,.

2
e _1d 1
B

0" B da

=0

* K,/E, =1 = compression modulus is roughly four times too large

* If we consider the generalized L, . -model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

0246

1

8
K, = = (9}50 [£1,] + B g,y o] + Elpy 5] + 9K o, ,2]) =E + E(EO [£,2] + Efl@, ,])-
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s

K, from the cubic lattice of half-skyrmions

* Can estimate the compression modulus by scaling

1

Ez4[¢(€lL1/z)] = (Ez[%/z] +E4[¢1/2]) = E,.

2
e _1d 1
B

0" B da

=0

* K,/E, =1 = compression modulus is roughly four times too large

* If we consider the generalized £ . -model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

0246

1

8
K, = = (9E0 [£1,] + B g,y o] + Elpy 5] + 9K o, ,2]) =E + E(EO [£,2] + Efl@, ,])-

* Can be marginally improved by considering non-cubic crystals
* Lower B.E.s are required = inclusion of vector mesons necessary
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Skyrmion in the presence of vector mesons

* Large N-limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but vector
as well

* Can identify vector mesons with gauge multiplets of a minimally broken SU(2), ® SU(2), ® U(1),,
gauge model [Phys. Rev. Lett. 56, 1035 (1986)]

* The w-meson can be introduced by gauging the U(1) vector symmetry, and it couples anomalously
through the gauged Wess-Zumino (WZ) term

* Skyrme stabilizing term related to the effects of the p-meson field in the infinite ,.-meson mass
limit
* Sextic term represents an infinte mass limit of the »-meson field

* Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite mass
vector mesons
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fKTH@% Skyrmion crystals stabilized by w-mesons

The «-Skyrme model

* Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
F? m>

_ 1 2 2 T v @ v 1 a,v
L= —%Fﬂ m_ Tr (Id2 —¢) - E;ﬁ‘ Tr(L#LV) - 2713;7# w0, = Ezyf‘ 7 /’Ja)ﬂva)a‘g + {@wwﬁb’”
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The »-Skyrme model

* Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
F2 m2

L= -——Fm?Tr(1d, —p) -

1
2 — — = ppa, v ©
T Tr( L)+ h3;7 a) § 4h77 7w a)ﬂ+{8wa)#l/>’

h;7 li2s o

* Interaction (WZ) term ﬂwwﬂl’a’# describes coupling of the »-meson to three pions
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The »-Skyrme model

* Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
F2 m2

L= -——Fm?Tr(1d, —p) -

1
7 2 _ = e, @
YER Tr( L)+ h3;7 a) § 4h77 7w a)ﬂ+{8wa)#[>’

h;7 li2s o

* Interaction (WZ) term ﬂwwﬂl’a’# describes coupling of the »-meson to three pions

* Coupling constant 2 related to the v — ~tn~ 7" decay rate
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The «-Skyrme model

Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
F2 m2

1 » I
L= —%Fzm2 Tr (Id gD) h;yf‘ Tr( ) %77 a) = E}y’“ 7 /J]a)wa)ﬂﬂ + {@wa)ﬁBf‘

Interaction (WZ) term ﬂwwﬂl’a’# describes coupling of the »-meson to three pions

Coupling constant £ related to the » — ~tn~ 7" decay rate
Static Lagrangian not bounded below = non-trivial extremization
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fKTH@%% Skyrmion crystals stabilized by w-mesons

The «-Skyrme model

Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
1 2. 2 F2 v m2 1 a, vB
/L= —%F m_ Tr (ld ¢) “ Tr( ) %77 a) L~ Eiy"u ntw w 8 + {8@@#8‘6‘

‘LtVﬂ

h’?

Interaction (WZ) term ﬂwwﬂl’a’# describes coupling of the »-meson to three pions

Coupling constant £ related to the » — ~tn~ 7" decay rate
Static Lagrangian not bounded below = non-trivial extremization

Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 5 =1, ...,4
[Phys. Rev. D 79, 085014 (2009)]
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fKTH@%% Skyrmion crystals stabilized by w-mesons

The «-Skyrme model

Adkins and Nappi «-Skyrme Lagrangian is [Phys. Lett. B 137, 251-256 (1984)]
F2 m2

1
L= Eom Tr(id, ~p) -

‘LtVd

1
v _w _ = pa vp
h;yf‘ Tr( L)+ h3;7 a) § 4h;7# 70,9, +{8wa)#[>’*‘

Interaction (WZ) term ﬂwwﬂb’# describes coupling of the »-meson to three pions

Coupling constant £ related to the » — ~tn~ 7" decay rate
Static Lagrangian not bounded below = non-trivial extremization

Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 5 =1, ...,4
[Phys. Rev. D 79, 085014 (2009)]

* Static problem reformulated and true static energy minimizers constructed up to B = 8 [J. High
Energ. Phys. 07,184 (2020)]
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fKTH@%% Skyrmion crystals stabilized by w-mesons

The «-Skyrme model

* In every Yang—Mills theory, the canonical momentum conjugate to the temporal component of the
gauge field vanishes identically [Nucl. Phys. A 526, 453-478 (1991)],

L,
0= 30m,)
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The «-Skyrme model

* In every Yang—Mills theory, the canonical momentum conjugate to the temporal component of the
gauge field vanishes identically [Nucl. Phys. A 526, 453-478 (1991)],

L,
0= 30m,)

Constitutes a primary constraint of the theory

Dirac—Bergmann algorithm (singular Lagrangian — constrained Hamiltonian system):
conservation of this primary constraint in time results in a secondary constraint of the form

statics
—_

1@@[30 + mia)o - Qup# =0 (—VZ + mi) w, = —ﬂwBO

Can be solved and used to eliminate the constrained degree of freedom, «,
Coincides with Euler—Lagrange equation from variation of £ w.rt o
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fKTH@% Skyrmion crystals stabilized by w-mesons

Geometric formulation of the »-Skyrme model

* Skyrme field: ¢ : (M, g) — (G, h)
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Geometric formulation of the w-Skyrme model

* Skyrme field: ¢ : (M, g) — (G, h)

* M an oriented Riemannian manifold, and G a compact Riemannian manifold
* Omega meson w = o, dx* € QN (M), w, € C*(M)

* Volume form = =vol /|G| = B, = *ggp*E
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fKTH@%% Skyrmion crystals stabilized by w-mesons

EEEEEEEEE

Geometric formulation of the w-Skyrme model

* Skyrme field: ¢ : (M, g) — (G, h)

* M an oriented Riemannian manifold, and G a compact Riemannian manifold

* Omega meson w = o, dx* € QN (M), w, € C*(M)

Volume form = = vol /|G| = B, = *ggp*E

Statics: constrained variational problem [J. High Energ. Phys. 07,184 (2020)]

E(@,g):f( dp[” + 207 ¢) + 3 [dla, +;w)vol > 0,
M

subject to the constraint

* — maﬂ@w
(Ag+1)a)0:—cw*¢ = 0= F
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Geometric formulation of the w-Skyrme model

* Skyrme field: ¢ : (M, g) — (G, h)

* M an oriented Riemannian manifold, and G a compact Riemannian manifold

* Omega meson w = o, dx* € QN (M), w, € C*(M)

* Volume form = =vol /|G| = B, = *ggp*E

* Statics: constrained variational problem [J. High Energ. Phys. 07,184 (2020)]

E(@,g):f( dp[” + £(07¢) + 2 [day [ + 2] vol, > 0,
M

subject to the constraint

* — m&ﬂ@w
(Ag+1)a)0:—cw*¢ = 0= F

Critical points of this are solutions of the Euler—Lagrange equations associated to the
unconstrained Lagrangian £
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Geometric formulation of the w-Skyrme model

Skyrme field: ¢ : (M, g) — (G, h)

M an oriented Riemannian manifold, and G a compact Riemannian manifold
Omega meson o = w,dx* € QN (M), w, € C*(M)

Volume form = = vol /|G| = B, = *ggo*E

Statics: constrained variational problem [J. High Energ. Phys. 07,184 (2020)]

E(gp,g):f( dp[” + £(07¢) + 2 [day [ + 2] vol, > 0,
M

subject to the constraint

* — m&ﬂ@w
(Ag+1)a)0:—cw*¢ = 0= F

Critical points of this are solutions of the Euler—Lagrange equations associated to the
unconstrained Lagrangian £

The constraint can be solved by a non-linear conjugate gradient method

Paul Leask SIG XII

22/42



by

a?%%a
£KTHE  Skyrmion crystals stabilized by »-mesons

VETENSKAP
28 OCH KONST 9%

St

Topological energy bound

* Define B, = xp"= such that p"= = 3 volg

Paul Leask SIGXIl 23/42



by

a?%%a
£KTHE  Skyrmion crystals stabilized by »-mesons

VETENSKAP
28 OCH KONST 9%

St

Topological energy bound

* Define B, = xp"= such that p"= = 3 volg
* Then, the topological charge can be expressed as
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Topological energy bound

* Define B, = xp"= such that p"= = 3 volg
* Then, the topological charge can be expressed as

(A +1)a)0=—cw*¢*3 — B=/¢*5=—l/ (A +1)a)0VO| :—l/wovol
g oY Ca) 1Y g £ Ca) 1Y g

* Cauchy—Schwartz inequality:

2
Bzzl fwovol sl /wzvol flvol |/a)2VO|
Cﬁ M & \Jy 0 M ¢, ‘M 0 ¢

@
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VETENSKAP
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St

Topological energy bound
* Define B, = xp"= such that p"= = 3 volg
* Then, the topological charge can be expressed as

(A +1)a)0=—cw*¢*3 — Bz/Q*E:—l/ (A +1)a)0VO| :—l/wovol
g oY Ca) 1Y g £ Ca) 1Y g

* Cauchy—Schwartz inequality:
2 M

pr=L /w vol | <1 /wzvol flvol :—|/a)2vol

CﬁMOg CjMOgM 5 CjMOg

* Yields a simple lower topological bound on the static energy,

B> 3 B
Ezlfwzvol > 2 sl P
2./, £ 2| M| 27

Paul Leask SIG XII
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fKTH@% Skyrmion crystals stabilized by w-mesons
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w-Skyrme stress tensor

* The stress-energy tensor § = Sl.jdxl'dxf associated to the energy

E(p,g):fM( dp[ + 2070 ¢) + 3 [day [* + 202 vol,,

subject to the constraint
(Ag + 1) w,=—¢ *xP'E,

is the section of Sym? (7™ A1) given by [J. High Energ. Phys. 06, 116 (2024)]]

1 1 1 1 1 ., 1
S(p,g) = (1_6|d¢|2 + g(V° ?) — Z|d%|2 - ng)g— (g@ h— zdwo ® da)o)
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fKTH% Skyrmion crystals stabilized by w-mesons

w-Skyrme stress tensor

* The stress-energy tensor § = Sl.].dxl'dxf associated to the energy

E(p,g):fM( dp[ + 2070 ¢) + 3 [day [* + 202 vol,,

subject to the constraint
(Ag + 1) w,=—¢ *xP'E,

is the section of Sym? (7™ A1) given by [J. High Energ. Phys. 06, 116 (2024)]]

1 1 1 1 1 ., 1
S(p,g) = (1_6|d¢|2 + g(V° ?) — Z|d%|2 - ng)g— (g@ h— zdwo ® da)o)

* Coincides with stress tensor of the unconstrained problem
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Skyrmion crystals stabilized by w-mesons

w-skyrmion crystals

(d) chain crystal

(c) multiwall crystal

Paul Leask

SIG XIl

Crystal | ¢ | E,(MeV) |, (fm™)

SC,, | 984 | 7166 | 0.128

a 98.4 715.0 0.125
chain 98.4 715.0 0.125
multiwall | 98.4 715.0 0.125
SC,, | 347 | 8606 | 0526

a 34.7 859.6 0.526
multiwall | 34.7 859.3 0.515
chain 34.7 859.1 0.513
SC,, |1434] 9256 | 0.060
chain | 1434 | 9222 0.052

a 14.34 922.1 0.051
multiwall | 14.34 917.3 0.047
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fKTH@%% Skyrmion crystals stabilized by w-mesons
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Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF

Z(Z -1 N - 2)?
:aVB—ﬂSBZ/3—a ( )—a( ) + (N, 2).

K ¢ B3 4 B

b
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Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF

Z(Z-1) (N - 2)?
— 2/3
=a,B - aB* - a, o Ty HIN2).

E,

* Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:
* 2, =157 -16.0MeV
* 4, =173 - 18.4MeV
* 4, =0.625MeV
* 4, ~237MeV

Paul Leask SIGXII 26/42



EEEEEEEEE

fKTH@%% Skyrmion crystals stabilized by w-mesons

Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF
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— 2/3
=a,B - aB* - a, o Ty HIN2).
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* Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:

* 4, =157 -16.0MeV
* 4, =17.3 - 18.4MeV
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF

Z(Z -1 N - 2)?
:aVB—ﬂSBZB—a ( )—a( ) + (N, 2).

g ¢ B3 4 B

b

* Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:

a, = 15.7 - 160 MeV
ag =~ 17.3 - 18.4MeV
a. = 0.625 MeV

a, =237MeV

* Attempts so far:
* L, a,=136MeV and 4, = 320 MeV from half-skyrmion crystal chunks [Nucl. Phys. A 596, 611630 (1996)]
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Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF

Z(Z -1 N - 2)?
:aVB—ﬂSBZB—a ( )—a( ) + (N, 2).

g ¢ B3 4 B

b

* Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:

* 4, =157 -16.0MeV
* 4, =17.3 - 18.4MeV
* 4, =0.625MeV

* a,=237MeV

* Attempts so far:

* L, a,=136MeV and 4, = 320 MeV from half-skyrmion crystal chunks [Nucl. Phys. A 596, 611-630 (1996)]
* L, 4. = 0.608 MeV from z-particle approximation [Phys. Rev. C 99, 044312 (2019)]
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Bethe—Weizsacker semi-empirical mass formula

* Can use skyrmion crystals to estimate coefficients in the Bethe—Weizsacker SEMF

EaB-apl_g 22"V w2y SN, Z
, = a,B —ag - a, IE —4— 3 + (N, 2).

* Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:
. ﬂV ~15.7 - 16.0 MeV
* 4, =173 -18.4MeV
* 4. =0.625MeV
. a = 23.7MeV

* Attempts so far:

* L, a,=136MeV and 4, = 320 MeV from half-skyrmion crystal chunks [Nucl. Phys. A 596, 611-630 (1996)]
. E ﬂc = 0.608 MeV from z-particle approximation [Phys. Rev. C 99, 044312 (2019)]
- L ~ S .(0) = 23.8 MeV from multiwall crystal [Phys. Rev. D 109, 056013 (2024)]

0246 N
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fKTH@% Skyrmion crystals stabilized by w-mesons

a-particle approximation to the SEMF

* Bethe—Weizsacker SEMF

2
ze-1)  W-2r, (N, 2)

_ _ 2/3 _
E =a,B élSB a I . 3

b v
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fKTH@%% Skyrmion crystals stabilized by w-mesons

a-particle approximation to the SEMF

* Bethe—Weizsacker SEMF

Z(Z-1) (N -2)?
a, IE —4 3 + (N, Z2)

— 2/3
E =a,B-aB*’ -

* Method: approach the SEMF using APA with »’> «z-particles
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fKTH@%% Skyrmion crystals stabilized by w-mesons

a-particle approximation to the SEMF

* Bethe—Weizsacker SEMF

Ze-1_ W= 2)° +3(N, 2)

_ _ 2/3 _
E =a,B aSB a I . 3

b v

* Method: approach the SEMF using APA with »’> «z-particles
* Energy of a B = 4x° chunk in the APA:

o
B Ecrystal
chunk —

6 o
chunk chunk _ 2 ra _ face 2/3
B+ EM, M = 6, = — 0B

Paul Leask SIG XII
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fKTH@%% Skyrmion crystals stabilized by w-mesons

a-particle approximation to the SEMF

* Bethe—Weizsacker SEMF

E =a B—-a.B3 Zz-1) W=2y SN, Z
= a,B — ag —a, IE —4 3 + (N, Z2)

* Method: approach the SEMF using APA with »’> «z-particles
* Energy of a B = 4x° chunk in the APA:

JE ‘
B . crystal hunk A , ) 2
Echunk - B + EC un D) E; un 6 Eface — WB /
* Classical binding energy of an isospin symmetric chunk:
E* o Iz -
E, = BE, - thunk E - crystal e 3E e R an 4, =E - crystal’dS 3E¢ e
4 n A 5
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fKTH@%% Skyrmion crystals stabilized by w-mesons

a-particle approximation to the SEMF

* Bethe—Weizsacker SEMF

E =a B—-a.B3 Zz-1) W=2y SN, Z
= a,B — ag —a, IE —4 3 + (N, Z2)

Method: approach the SEMF using APA with »’ «-particles
Energy of a B = 4»° chunk in the APA:

E? 6
g _ _crystal hunk hunk 2pa _ __face poj3
Echunk - B+ EC™™" 2 E; = 6n Eface - 42/3 B /
* Classical binding energy of an isospin symmetric chunk:
E* o E* o
E B E EBh = E _ crystal B - 3Eface BZ / 3 — ﬂV _ El _ crystal’ éZS 3Eface
cnun 4 ‘3/5 4 ‘3/5

Only need to compute the nucleon mass £, crystal energy Ecrystal and the energy of a single face

of an «-particle Ef,
Paul Leask SIG XII 27/42
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| * Experimental:

* a,=157-16.0MeV
* a;=173-18.4MeV
* L,,-Skyrme model:
* Predicted: 4, = 136 MeV
* Predicted: 4, = 320 MeV
04~ SOkyrme model:
* Predicted: 2, = 18.1 MeV
* Predicted: 4, = 75.5 MeV
* »-Skyrme model:

* Predicted: a, =156 MeV
* Predicted: ag; =18.6 MeV
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Compressibility of «-skyrmion Matter

* Energy of isospin symmetric nuclear matter

2
1 (ng—n,)
E(ng) B = Ey + EKo o2 +0 ((” - ﬂ0)3) , K,/E, = 0260
0
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Compressibility of «-skyrmion Matter

* Energy of isospin symmetric nuclear matter

2
1 (g —n)
E(i) /B = By + 3Ky ——

+ O ((ng - 1)), K,/E,~0.260
9710

B

* Can compute the compression modulus via

9713 0°E
K, =

cell

Bcell a”é
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Compressibility of «-skyrmion Matter

* Energy of isospin symmetric nuclear matter

2
1 (g —n)
E(i) /B = By + 3Ky ——

+ O ((ng - 1)), K,/E,~0.260
9710

B

* Can compute the compression modulus via

2 av)
K = 9”0 J Ecell
0 B ) 2

cell 0np —n

B 0

. . . . g . . . . . 1 kl
Fixed density variations requires replacing Sl.]. by its projection SZ.]. - @Sklg &
Paul Leask SIG Xl
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Compressibility of «-skyrmion Matter

* Energy of isospin symmetric nuclear matter

2
1 (g —n)
E(i) /B = By + 3Ky ——

+ O ((ng - 1)), K,/E,~0.260
9710

B

* Can compute the compression modulus via

9713 0°E
K, =

cell

Bcell 3”]%

5=

. . . g . . . . . 1 kl
Fixed density variations requires replacing Sl.]. by its projection SZ.]. - @Skkg &

Ground state crystal with the lowest B.E. coupling constant: multiwall with ¢ = 14.34
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fKTH@%% Skyrmion crystals stabilized by w-mesons

Compressibility of «-skyrmion Matter

* Energy of isospin symmetric nuclear matter

1. (n,—n

B
E(n,)|B = Ey + SKy———

2
9720

* Can compute the compression modulus via

K, =

* We find E, =917 MeV and K, =370 MeV =

Paul Leask

- 9713 0°E

o)

B

cell

jgce” 3”%

5=

Fixed density variations requires replacing Sl.]. by its projection SZ.]. -

K,/ E, = 0.403

SIGXII

+ O ((ng - 1)), K,/E,~0.260

1 kl
Tr,(g) S &ij

Ground state crystal with the lowest B.E. coupling constant: multiwall with ¢ = 14.34
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* Main difference between coupling to ,-mesons and «-mesons: w-meson interacts with the
baryon current, p-meson interacts with the vector pion current
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fKTHQ%% Rho mesons in the Skyrme model

Rho mesons in the Skyrme model

* Main difference between coupling to ,-mesons and «-mesons: w-meson interacts with the
baryon current, p-meson interacts with the vector pion current

* Adkins p — 7 Lagrangian is [Phys. Rev. D 33, 193 (1986)]

o= 5 Tr (aﬂzﬁam) +

16% ([@U)UT’ (@U)UT]Z) h3F2 2 (Tr(U) - 2)
—SlhT (RT R/‘V)+%mﬁ Tr (R'R) +Tr (R 0<U' U U')
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fKTHQ%% Rho mesons in the Skyrme model

Rho mesons in the Skyrme model

* Main difference between coupling to ,-mesons and «-mesons: w-meson interacts with the
baryon current, p-meson interacts with the vector pion current

* Adkins p — 7 Lagrangian is [Phys. Rev. D 33, 193 (1986)]

o= 5 Tr (aﬂzﬁam) +

16% ([@U)UT’ @U)UT]Z) h3F2 2 (Tr(U) -2)
—SlhT (RT Rf”)+%mﬁ Tr (R'R) +Tr (R 0<U' U U')

* Rho meson field is treated as the 2 x 2 four-vector R =z, +i7'p;

Paul Leask SIG XII
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Rho mesons in the Skyrme model

* Main difference between coupling to ,-mesons and «-mesons: w-meson interacts with the
baryon current, p-meson interacts with the vector pion current

* Adkins p — 7 Lagrangian is [Phys. Rev. D 33, 193 (1986)]

FZ
£=—ZTr(oU0" )+ -
—éﬂ'@ﬂRw)+%;@/ﬁ( “)+aTr (R FUUPU)

([0, (9yU)UT]2)

, 3FZ m> (Tr(U) - 2)

* Rho meson field is treated as the 2 x 2 four-vector R =z, +i7'p;

* Chirally invariant constraint Tr(R;U) = 0 needed to reduce number of d.o.f. to necessary amount
for unit isospin
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fKTHQ%% Rho mesons in the Skyrme model

Rho mesons in the Skyrme model

* Main difference between coupling to ,-mesons and «-mesons: w-meson interacts with the
baryon current, p-meson interacts with the vector pion current

* Adkins p — 7 Lagrangian is [Phys. Rev. D 33, 193 (1986)]

o= 5 Tr (aﬂzﬁam) +

16% ([@U)UT’ @U)UT]Z) h3F2 2 (Tr(U) -2)
—SlhT (RT Rf”)+%mﬁ Tr (R'R) +Tr (R 0<U' U U')

* Rho meson field is treated as the 2 x 2 four-vector R =z, +i7'p;

* Chirally invariant constraint Tr(R;U) = 0 needed to reduce number of d.o.f. to necessary amount
for unit isospin
* Meissner considered an alternative approach by replacing Skyrme term with sextic term

LT[0, 0, u)U]) — 12 Tr (B,B) [Phys. Lett. B185, 399-402 (1987)]
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The p-Skyrme model

* Rhomeson R = R dx* € Q'(M) ® su(2) where R, = i7"
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éZf“’KTHQi% Skyrmion crystals coupled to p-mesons

The p-Skyrme model

* Rhomeson R = R dx* e QY (M) ® su(2) where R, =ipir"
* The p-Skyrme Lagrangian is [arXiv:2405.20757]

FZ

- 2.2 ” L 2. vB
L=- h3F m2Tr(1d = ) + 2 THLL) + Zp ey P Tr (1L, L)L, L))
2
mﬁ v a. v 1 »
+4—h3;71u’ Tr (R;RV) - 8h;7i“ 7 A Tr( - a[@) L 5771“1377 YaTr (R#V[Lﬂ, L}/])
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fKTHQ% Skyrmion crystals coupled to p-mesons

EEEEEEEEE

The p-Skyrme model

* Rhomeson R = R dx* e QY (M) ® su(2) where R, =ipir"
* The p-Skyrme Lagrangian is [arXiv:2405.20757]

FZ
_ __~y2 2 _ v a. vf
L= Tr(id = ) + oy THLL) + 2ty Tr (IL, LI, L)
2
m
v o,V 1 v
+4—f;;7ﬂ Tr(R'R) - YAl (R R ) + ~rer7aTr (R, [L,L))

* New interaction term includes the o7z vertex £

- W—Zam ewo[ﬁaz

a v'h
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fKTH&%% Skyrmion crystals coupled to p-mesons
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Topological energy bound

. TheJo-Skyrme Lagrangian in adimensional units is

1, , 1 .
L== (d¢,d@ / Voo ¢vol = (" Q, 0" )L + 8 {]l/[f;2 (R,R)L2 +3 (dR, dR)L2 +¢,(dR, 9 Q>L2}
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fKTHQ%% Skyrmion crystals coupled to p-mesons

Topological energy bound

. TheJo-Skyrme Lagrangian in adimensional units is
— = o _ l * 2 l *
/b= (d¢,d@ / 14 ¢vo| y (" Q, 0" )L + 8 {]l/[ﬁ (R,R)L2 +3 (dR, dR)L2 +¢,(dR, 9 Q>L2}
* Bogomolny trick (completing the square):

1 1 1,
— (dR,dR R,0"Q) = =(dR *Q,dR Q) - = Q
S (AR, R) , +¢, (dR,9°Q) , =~ (dR+ 0" Q,dR +¢,0°Q) = ¢ (¢'Q,0°Q)
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fKTH&%% Skyrmion crystals coupled to p-mesons

Topological energy bound

. TheJo-Skyrme Lagrangian in adimensional units is
1, ., 1 "
L== (d¢, d@ / Voo ¢vol = (" Q, 0" )L + 8 {]l/[f;2 (R,R)L2 +3 (dR, dR)L2 +¢,(dR, 9 Q>L2}
* Bogomolny trick (completing the square):
> (dR, dR)L2 +¢,(dR, @ Q>L2 s (AR +¢,0"Q,dR + ¢ 0 Q) ZC (0"Q, 0" )
* Then, the energy can be expressed as

(dgp, do) , / Vepvol, + (i — 4¢ ) ("Q, 0" Q) , +8M (R,R) , +4(dR + 0 Q,dR + 2"Q)

1 .
- 5 (dp,dp) , + (Z - 4@) P’ Q7)) ,

2247[2‘/(i—4cj)|8|20 = i—/kcij =

Paul Leask SIGXIl 34/42
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fKTH&%% Skyrmion crystals coupled to p-mesons
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B =1 hedgehog p-skyrmion
* Standard hedgehog ansatz for Skyrme field

o(r,6,¢) = (cos £(r),sin f(r)7,(6,4)),

Paul Leask SIG XII

i, = (sin 6 cos ¢, sin § sin ¢, cos §)
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fKTHQ%% Skyrmion crystals coupled to p-mesons

EEEEEEEEE

B =1 hedgehog p-skyrmion
* Standard hedgehog ansatz for Skyrme field
o(r,6,¢) = (cos f(r),sin f(r)ii,(8,4)), #, = (sinfdcosg,sindsing,cosé)
* Most general form for the spin-1 p-field is

Rf{ =ipit, pl=c¢ m]qf(r)

z ﬂl]
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* Standard hedgehog ansatz for Skyrme field
o(r,6,¢) = (cos f(r),sin f(r)ii,(8,4)), #, = (sinfdcosg,sindsing,cosé)
* Most general form for the spin-1 p-field is
Rf =ipit, pl=c¢ m]qf(r)

z éllj

* Leads to a coupled pair of ODEs that can be solved with a multishooting method
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B =1 hedgehog p-skyrmion
* Standard hedgehog ansatz for Skyrme field

o(r,6,¢) = (cos f(r),sin f(r)ii,(8,4)), #, = (sinfdcosg,sindsing,cosé)
* Most general form for the spin-1 p-field is
Rf =ipit, pl=c¢ m]qf(r)

z éllj

* Leads to a coupled pair of ODEs that can be solved with a multishooting method
* Soliton must be bounded in space, the appropriate boundary conditions are

fO) ==z, f() =0, £(0)=0, &(c)=0.
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fKTHQ%% Skyrmion crystals coupled to p-mesons

EEEEEEEEE

B =1 hedgehog p-skyrmion
* Standard hedgehog ansatz for Skyrme field
o(r,6,¢) = (cos f(r),sin f(r)ii,(8,4)), #, = (sinfdcosg,sindsing,cosé)

Most general form for the spin-1 p-field is

Rf] =ipit, pl=c¢ m]qf(r)

z éllj

Leads to a coupled pair of ODEs that can be solved with a multishooting method
Soliton must be bounded in space, the appropriate boundary conditions are

fO) ==z, f() =0, £(0)=0, &(c)=0.

Skyrme radial profile weakly affected by p,-meson — robustness of the hedgehog skyrmion

[arXiv:2405.05731]
Paul Leask SIG Xl
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ég’KTHQ% Skyrmion crystals coupled to p-mesons
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p-Skyrme stress tensor
* The stress-energy tensor § = Sl.jdx"dxf of ¢ : (M, g) — (G, h), associated to the energy
E(p, pg) =f (1|d¢|2+1|¢*g|2+ (Ve 0) + SMP|R|? + 4|dR|? + 8¢ | (dR, Q) |2)vo| ,
o \2 -+ £ # £

is the section of Sym?(7* A1) given by
11 ) *
S(p.8) =3 [5|d¢>|2 +2197Q1 + (Vo 0) + 8M|R|” + 4]dR|* + 8] (dR, 9" Q) I"‘]g

- (égb*h - igb*ﬂ -"Q - 8M’R® R~ 4dR - dR - 8¢ dR - gp*Q)
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fKTHQ%% Skyrmion crystals coupled to p-mesons

EEEEEEEEE

p-Skyrme stress tensor

* The stress-energy tensor § = Sl.jdx"dxf of p: (M, g) — (G, k), associated to the energy

E@pg) = | (51d0P + g 0 + (7 2 0) + 8I2|RP + 4|dR P + 8¢,| (GR, 9 Q) |2 vol,
M

is the section of Sym?(7* A1) given by
S(p.9) =5 519912 + 21" + (7 ) + 8ILIRP + 4|dR P + 82| (dR,p"0) 2| ¢
- (%gp*h - i¢*Q 0" Q) — 8]1/{3]% ® R —4dR-dR - 8¢ dR - ¢*Q)

* Much easier to derive than the »-meson case as there is no additional constraint!
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p-Skyrme stress tensor

* The stress-energy tensor § = SZ.J.dx"dxf of p: (M, g) — (G, k), associated to the energy

E(p, p,g) = f (1|dgo|2 + l|¢*Q|2 + (Vo @) + 8M?|R|* + 4|dR|* + 8¢ | (R, 0" Q) |2)vo| ,
M 2 4 P o g

is the section of Sym?(7* A1) given by
S(p.9) =5 519912 + 21" + (7 ) + 8ILIRP + 4|dR P + 82| (dR,p"0) 2| ¢
- (%gp*h - i¢*ﬂ 0" Q) — 8]1/{3]% ® R —4dR-dR - 8¢ dR - ¢*Q)

* Much easier to derive than the »-meson case as there is no additional constraint!
* Proof is a simple extension of the standard L ,, -Skyrme model proof

Paul Leask SIG XIl 37/42
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* Like the massive L, -Skyrme model, we can also derive virial constraints
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Derrick scaling

* Like the massive L, -Skyrme model, we can also derive virial constraints
* Write the energy as

E(¢,J0,g)=/ (7 2 ) + 3 1dpl? + SMZIRP + g 0P + 4|dRI? + 8¢, (4R, 970) || vol,
| |Ve9)

50 &
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éZf@KTHQ%% Skyrmion crystals coupled to p-mesons

Derrick scaling

* Like the massive L, -Skyrme model, we can also derive virial constraints
* Write the energy as

E(¢,J0,g)=/ (7 2 ) + 3 1dpl? + SMZIRP + g 0P + 4|dRI? + 8¢, (4R, 970) || vol,
| |Ve9)

&
0 52

2

4
* We obtain the “usual” Derrick scaling constraint via

_l o l 2 2 2_1 * 2 2 Q2 * 2
/MTrg(S)volg—Z/M[3(V p) +1dpl? + SMZIRI? - 119" QI - 4|dR [ - 82| (dR,p"0) | vol,

1
:5(3E0+E2—E4) 0 = |E-E+3E=0
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fKTHQ%% Skyrmion crystals coupled to p-mesons

Derrick scaling

* Like the massive L, -Skyrme model, we can also derive virial constraints
* Write the energy as

E(¢,J0,g)=/ (7 2 ) + 3 1dpl? + SMZIRP + g 0P + 4|dRI? + 8¢, (4R, 970) || vol,
| |Ve9)

&
0 52

2

4
* We obtain the “usual” Derrick scaling constraint via

_l o l 2 2 2_1 * 2 2 Q2 * 2
/MTrg(S)volg—Z/M[3(V p) +1dpl? + SMZIRI? - 119" QI - 4|dR [ - 82| (dR,p"0) | vol,

1
:5(3E0+E2—E4) 0 = |E-E+3E=0

* Here we have used the identities Tr ¢" = |dg|* and Tr,d4-B =-2|(4,B) |2
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* B.E. decreases with increasing
coupling ¢,
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* B.E. decreases with increasing
coupling ¢,

* z-particle clustering observed for high

coupling, similar to [Phys. Rev. Lett.
121, 232002 (2018)]
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* B.E. decreases with increasing
coupling ¢,

* z-particle clustering observed for high

coupling, similar to [Phys. Rev. Lett.
121, 232002 (2018)]
* Energy difference between zero

density crystal and ground state
(E(n; — 0) — E(n,)) should decrease
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Multi-skyrmions with p-mesons

—%— ¢ = 0.000
——cq = 0.125
0.92 o = 0.156
——cq = 0.200
0.91 | | ——ca = 0.225
Experimental

O.g 1 1 1
1 15 2 2.5 3 3.5 4
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B.E. decreases with increasing
coupling ¢,

a-particle clustering observed for high
coupling, similar to [Phys. Rev. Lett.
121, 232002 (2018)]

Energy difference between zero
density crystal and ground state

(E(n; — 0) — E(n,)) should decrease
Hence the curvature about £, should
also decrease
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Multi-skyrmions with p-mesons

B.E. decreases with increasing
coupling ¢,
* z-particle clustering observed for high

coupling, similar to [Phys. Rev. Lett.
121, 232002 (2018)]

* Energy difference between zero
density crystal and ground state
(E(n; — 0) — E(n,)) should decrease

* Hence the curvature about EO should
also decrease

= Lower compression modulus K|,

—%— ¢ = 0.000
——cq = 0.125
0.92 o = 0.156
——cq = 0.200
0.91 | | ——ca = 0.225
Experimental

Og 1 1 1
1 1.5 2 25 3 35 4
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Skyrmion crystals coupled to p-mesons

Compressibility of p-skyrmion Matter
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— ¢,=0

— ¢,=0.125
— ¢,=0.166
— ¢,=0.208
— ¢,=0.220
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1.5
n/ng

2.0

2.5
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* Ground state crystal found to be the
a-particle crystal for all ¢,

* K, decreases with binding energies

¢ |K,JE, | K,(MeV) [BE. (%)
0 | 1170 | 1080 | 554
0.125 | 0.985 | 909 5.36
0.166 | 0.778 718 5.00
0.208 | 0.461 | 425 4.25
0.220 | 0.381 | 351 3.85

40/42



by

ege&%@a
KTH%

VETENSKAP
28 OCH KONST 2%

LI

Concluding remarks



as

a?%%a
£KTHY Concluding remarks

VETENSKAP g}
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:

Paul Leask SIGXII 42/42



as

a?%%a
ZKTHS

VETENSKAP é}"
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:
* resolves the compressibility issue in the Skyrme model
* reduces binding energies
* accurately estimates coefficients in the SEMF



as

a?%%a
ZKTHS

VETENSKAP é}"
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:

* resolves the compressibility issue in the Skyrme model
* reduces binding energies
* accurately estimates coefficients in the SEMF

* Further work:



as

a?%%a
ZKTHS

VETENSKAP é}"
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:

* resolves the compressibility issue in the Skyrme model
* reduces binding energies
* accurately estimates coefficients in the SEMF

* Further work:
* Obtain nuclear matter equation of state via considering skyrmions coupled to both p and » mesons



as

a?%%a
ZKTHS

VETENSKAP é}"
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:
* resolves the compressibility issue in the Skyrme model
* reduces binding energies
* accurately estimates coefficients in the SEMF

* Further work:

* Obtain nuclear matter equation of state via considering skyrmions coupled to both p and » mesons
* Isospin asymmetric nuclear matter: semi-classical quantization of the vector meson theory



as

a?%%a
ZKTHS

VETENSKAP
28 OCH KONST 9%

St

Concluding remarks

* We have shown that coupling to vector mesons:

* resolves the compressibility issue in the Skyrme model
* reduces binding energies
* accurately estimates coefficients in the SEMF

* Further work:

* Obtain nuclear matter equation of state via considering skyrmions coupled to both p and » mesons

* Isospin asymmetric nuclear matter: semi-classical quantization of the vector meson theory

* Numerically time consuming, can we find approximations to the crystal solutions in the vector meson theories?
* Half crystal approximation for skyrmions coupled to vector mesons [Nucl. Phys. A 736, 129-145 (2004)]
* Approximate multiwall crystals? [J. Phys. A: Math. Theor. 42, 482001 (2009)]
* Inhomogeneous planar crystals from instantons? [Nucl. Phys. A 989, 231-245 (2019)]
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