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Motivation

• Main aim: Compute acceptable values of the compression modulus of dense nuclear matter from
variants/extensions of the Skyrme model

• Compression modulus related to binding energies of nuclei
• Generalized Skyrme models have too high B.E.⇒ too large compression modulus
• High B.E. remedied by inclusion of vector mesons
• Ground state of dense nuclear matter has a crystalline structure in the classical approximation
⇒ We need to understand phases and phase transitions of nuclear matter within vector meson

variants of the Skyrme model
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Compressibility of dense nuclear matter

• Consider isospin symmetric nuclear matter at zero temperature with baryon density 𝑛𝛣 = 𝐵/𝑉

• The energy per baryon of such matter can be approximated about the nuclear saturation density
𝑛0 by use of a power series expansion [Prog. Part. Nucl. Phys. 101, 55 (2018)]:

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0 =
9𝑛20
𝐵
𝜕2𝐸
𝜕𝑛2𝛣
∣
𝑛𝛣=𝑛0

• 𝑛0 is defined to be the nuclear density s.t. (𝜕𝐸)/(𝜕𝑛𝛣)|𝑛𝛣=𝑛0 = 0
• 𝐸0 = 𝐸(𝑛0)/𝐵 is the energy per baryon of symmetric nuclear matter at the saturation density
• 𝐾0 is the compression modulus, a fundamental quantity in nuclear physics: a measure of nuclear
resistance under pressure at the saturation point 𝑛0

• Imposes significant constraints on the nuclear matter equation of state
• Fudicial values: 𝐸0 ≈ 922MeV and 𝐾0 ≈ 240 ± 20MeV⇒ 𝐾0/𝐸0 ≈ 0.26
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Compressibility of dense nuclear matter

How to compute 𝐸0, 𝐾0 from skyrmions?

• Approximate dense nuclear matter as a large extended crystalline configuration composed of𝑁
unit cells

• Each unit cell has baryon number 𝐵cell and volume 𝑉cell
• Baryon density is simply 𝑛𝛣 = 𝑁𝐵cell/(𝑁𝑉cell) = 𝐵cell/𝑉cell
• In the thermodynamic limit𝑁→ ∞, 𝐸(𝑛𝛣)/𝐵 → 𝐸cell/𝐵cell
• 𝐸cell is just the classical static mass of a skyrmion crystal→ 𝐸0 = 𝐸cell(𝑛0)/𝐵cell
• Can consider 𝐸cell(𝑛𝛣) by varying the baryon density 𝑛𝛣 or, equivalently, the unit cell volume 𝑉cell
• The compression modulus is thus

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

=
9𝑉20
𝐵cell

𝜕2𝐸cell
𝜕𝑉2cell

∣
𝑉cell=𝑉0
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Compressibility of dense nuclear matter

An example: multiwall crystal [Phys. Rev. D 109, 056013 (2024)]
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Phases of skyrmion matter

Generalized Skyrme model
• Effective Lagrangian of mesonic fields: 𝜑 ∶ (𝑀, 𝑔) → (SU(𝑁𝑓), ℎ),𝑁𝑓 = 2 (u,d-quarks)

• Left-invariant Maurer-Cartan form 𝜇 ∈ Ω1(SU(2)) ⊗ 𝔰𝔲(2)
• Associated two formΩ ∈ Ω2(SU(2)) ⊗ 𝔰𝔲(2),Ω(𝛸, 𝑌) = [𝜇(𝑥), 𝜇(𝑌)]
• Normalized volume form Ξ ∈ Ω3(SU(2)), Ξ(𝛸, 𝑌, 𝑍) = 1

24𝜋2
ℎ(𝜇(𝛸),Ω(𝑌, 𝑍))

• Generalized Skyrme model energy

𝐸(𝜑, 𝑔) = ∫
𝛭
{|d𝜑|2 + 1

4
|𝜑∗Ω|2 + 𝑉 ∘ 𝜑 + 𝑐6|𝜑

∗Ξ|2} vol𝑔

• Exhibits short range 𝜔-meson-like repulsion while still describing scalar meson effects
• Baryon d.o.f. not explicitly visible→ topology: Homotopy invariant↔ Baryon number

𝐵 = ∫
𝛭
𝜑∗Ξ ∈ Z

• Baryons realized as non-perturbative excitations of the pions⇒ solutions of the Euler–Lagrange
field equations - topological solitons (skyrmions)
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field equations - topological solitons (skyrmions)
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Phases of skyrmion matter

Skyrmion crystals

• Consider the base space to be the 3-torus

(R3/Λ, 𝑔Euc), Λ = {𝑛1𝑋⃗1 + 𝑛2𝑋⃗2 + 𝑛3𝑋⃗3 ∶ 𝑛𝑖 ∈ Z}

• Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism (with
T3 ≡ R3/Z3)

𝐹 ∶ (T3, 𝑔) → (R3/Λ, 𝑔Euc), 𝑥1𝑋⃗1 + 𝑥2𝑋⃗2 + 𝑥3𝑋⃗3

• The metric on T3 is the pullback 𝑔 = 𝐹∗𝑔Euc = 𝑔𝑖𝑗d𝑥
𝑖d𝑥𝑗, 𝑔𝑖𝑗 = 𝑋⃗𝑖 ⋅ 𝑋⃗𝑗

• (T3, 𝑔) is equivalent to (R3/Λ, 𝑔Euc)
• Vary metric 𝑔𝑠 with 𝑔0 = 𝐹

∗𝑔Euc⟺ vary lattice Λ𝑠 with Λ0 = Λ
• Energy minimized over all variations of 𝑔⟺ optimal period lattice Λ⋄
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Phases of skyrmion matter

Skyrmion crystals
• Given a smooth one-parameter family of variations (𝜑𝑠, 𝑔𝑠), skyrmion crystals are critical points of
the energy 𝐸(𝜑, 𝑔), that is solutions of

d
d𝑠
𝐸(𝜑𝑠, 𝑔𝑠)∣

𝑠=0
= ∫

T3
d3𝑥√𝑔 (Φ𝛢(𝜑, 𝑔)𝜑̇𝛢 + 𝑆𝑖𝑗(𝜑, 𝑔)𝑔̇𝑘𝑙𝑔

𝑗𝑘𝑔𝑙𝑖) = 0

• 𝑆(𝜑, 𝑔) ∈ Γ(⊙2𝑇∗T3) is the stress tensor and Φ ∈ Γ(𝜑−1𝑇SU(2)) the tension field of 𝜑
• The stress tensor for the L0246-model is found to be

𝑆(𝜑, 𝑔) = 1
2
(|d𝜑|2 + 1

4
|𝜑∗Ω|2 + 𝑉 ∘ 𝜑 − 𝑐6|𝜑

∗Ξ|2) 𝑔 − (𝜑∗ℎ − 1
4
𝜑∗Ω ⋅ 𝜑∗Ω)

• Phases of skyrmion matter⇔ fixed baryon density 𝑛𝛣 variations of 𝐸(𝜑, 𝑔)
• vol𝑔 is required to be invariant under variations 𝑔𝑠 of the metric⇒ 𝑆𝑖𝑗 ↦ 𝑆𝑖𝑗 −

1
Tr𝑔(𝑔)

𝑆𝑘𝑙𝑔
𝑘𝑙𝑔𝑖𝑗
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Phases of skyrmion matter

Summary of [J. Math. Phys. 64, 103503 (2023)]

• To determine crystalline phases, we need to compute the stress tensor

• For fixed L024-field 𝜑, there always exists a critical point of 𝐸(𝜑, 𝑔) w.r.t. variations of 𝑔 and it is in
fact a unique c.p. (generalizes to L0246-model)

• Four crystals were found with 𝐵
cell
= 4: the 𝜑1/2, 𝜑𝛼, 𝜑chain and 𝜑multiwall crystals

• From 𝜑1/2, the other three crystals can be constructed by applying a chiral SO(4) transformation
𝑄 ∈ SO(4), such that 𝜑 = 𝑄𝜑1/2, and minimizing 𝐸(𝜑, 𝑔) w.r.t. variations of 𝜑 and 𝑔

• These are

𝑄 ∈ {Id4, (
(0, 1, 1, 1)/√3

∗ )
⏟⏟⏟⏟⏟

𝑄𝛼

, ((0, 0, 0, 1)∗ )
⏟

𝑄multiwall

, ((0, 0, 1, 1)/
√2

∗ )
⏟⏟⏟⏟⏟

𝑄chain

}

• Related to symmetric scattering states of the 𝐵 = 4 𝛼-particle [Phys. Lett. B 391, 150–156 (1997)]
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Compression modulus problem in the Skyrme
model

Heuristic approach: 𝐾0 from scaling the cubic lattice of half-skyrmions

• Let 𝜑𝜆 ∶ R
3 × R → 𝑆3 be a one-parameter variation of 𝜑 s.t. 𝜑𝜆=0 = 𝜑

• This has infinitesimal generator 𝜕𝜆𝜑𝜆|𝜆=0 ∈ Γ(𝜑
−1𝑇𝑆3)

• Explicitly, consider the spatial rescaling 𝑥 ↦ 𝑒𝜆𝑥, then 𝜑𝜆 = 𝜑(𝑒
𝜆𝑥)

• The rescaled massless L24 static energy functional is then

𝐸𝜆 = 𝐸24[𝜑𝜆] = 𝑒
𝜆𝐸2 + 𝑒

−𝜆𝐸4

• Global L24-energy minimizing crystal is the cubic lattice of half-skyrmions 𝜑1/2 ≡ 𝜑(𝐿1/2)
• The rescaled half-crystal configuration 𝜑(𝑒𝜆𝐿1/2) approximates the true minimizer at volume
𝑉 = 𝑒3𝜆𝐿31/2 well for small 𝜆
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Compression modulus problem in the Skyrme
model

𝐾0 from the cubic lattice of half-skyrmions

• Can estimate the compression modulus by scaling

𝐾0 =
1
𝐵
d2

d𝜆2
∣
𝜆=0
𝐸24[𝜑(𝑒

𝜆𝐿1/2)] =
1
𝐵
(𝐸2[𝜑1/2] + 𝐸4[𝜑1/2]) = 𝐸0.

• 𝐾0/𝐸0 = 1 ⇒ compression modulus is roughly four times too large
• If we consider the generalized L0246-model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

𝐾0 =
1
𝐵
(9𝐸0[𝜑1/2] + 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] + 9𝐸6[𝜑1/2]) = 𝐸0 +

8
𝐵
(𝐸0[𝜑1/2] + 𝐸6[𝜑1/2]).

• Can bemarginally improved by considering non-cubic crystals
• Lower B.E.s are required⇒ inclusion of vector mesons necessary

Paul Leask SIG XII 16/42



Compression modulus problem in the Skyrme
model

𝐾0 from the cubic lattice of half-skyrmions

• Can estimate the compression modulus by scaling

𝐾0 =
1
𝐵
d2

d𝜆2
∣
𝜆=0
𝐸24[𝜑(𝑒

𝜆𝐿1/2)] =
1
𝐵
(𝐸2[𝜑1/2] + 𝐸4[𝜑1/2]) = 𝐸0.

• 𝐾0/𝐸0 = 1 ⇒ compression modulus is roughly four times too large

• If we consider the generalized L0246-model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

𝐾0 =
1
𝐵
(9𝐸0[𝜑1/2] + 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] + 9𝐸6[𝜑1/2]) = 𝐸0 +

8
𝐵
(𝐸0[𝜑1/2] + 𝐸6[𝜑1/2]).

• Can bemarginally improved by considering non-cubic crystals
• Lower B.E.s are required⇒ inclusion of vector mesons necessary

Paul Leask SIG XII 16/42



Compression modulus problem in the Skyrme
model

𝐾0 from the cubic lattice of half-skyrmions

• Can estimate the compression modulus by scaling

𝐾0 =
1
𝐵
d2

d𝜆2
∣
𝜆=0
𝐸24[𝜑(𝑒

𝜆𝐿1/2)] =
1
𝐵
(𝐸2[𝜑1/2] + 𝐸4[𝜑1/2]) = 𝐸0.

• 𝐾0/𝐸0 = 1 ⇒ compression modulus is roughly four times too large
• If we consider the generalized L0246-model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

𝐾0 =
1
𝐵
(9𝐸0[𝜑1/2] + 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] + 9𝐸6[𝜑1/2]) = 𝐸0 +

8
𝐵
(𝐸0[𝜑1/2] + 𝐸6[𝜑1/2]).

• Can bemarginally improved by considering non-cubic crystals
• Lower B.E.s are required⇒ inclusion of vector mesons necessary

Paul Leask SIG XII 16/42



Compression modulus problem in the Skyrme
model

𝐾0 from the cubic lattice of half-skyrmions

• Can estimate the compression modulus by scaling

𝐾0 =
1
𝐵
d2

d𝜆2
∣
𝜆=0
𝐸24[𝜑(𝑒

𝜆𝐿1/2)] =
1
𝐵
(𝐸2[𝜑1/2] + 𝐸4[𝜑1/2]) = 𝐸0.

• 𝐾0/𝐸0 = 1 ⇒ compression modulus is roughly four times too large
• If we consider the generalized L0246-model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

𝐾0 =
1
𝐵
(9𝐸0[𝜑1/2] + 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] + 9𝐸6[𝜑1/2]) = 𝐸0 +

8
𝐵
(𝐸0[𝜑1/2] + 𝐸6[𝜑1/2]).

• Can bemarginally improved by considering non-cubic crystals

• Lower B.E.s are required⇒ inclusion of vector mesons necessary

Paul Leask SIG XII 16/42



Compression modulus problem in the Skyrme
model

𝐾0 from the cubic lattice of half-skyrmions

• Can estimate the compression modulus by scaling

𝐾0 =
1
𝐵
d2

d𝜆2
∣
𝜆=0
𝐸24[𝜑(𝑒

𝜆𝐿1/2)] =
1
𝐵
(𝐸2[𝜑1/2] + 𝐸4[𝜑1/2]) = 𝐸0.

• 𝐾0/𝐸0 = 1 ⇒ compression modulus is roughly four times too large
• If we consider the generalized L0246-model then the situation is worse [Phys. Rev. D 90, 045003
(2014)]

𝐾0 =
1
𝐵
(9𝐸0[𝜑1/2] + 𝐸2[𝜑1/2] + 𝐸4[𝜑1/2] + 9𝐸6[𝜑1/2]) = 𝐸0 +

8
𝐵
(𝐸0[𝜑1/2] + 𝐸6[𝜑1/2]).

• Can bemarginally improved by considering non-cubic crystals
• Lower B.E.s are required⇒ inclusion of vector mesons necessary

Paul Leask SIG XII 16/42



Skyrmion in the presence of vector mesons



Skyrmion in the presence of vector mesons

Skyrmion in the presence of vector mesons

• Large𝑁𝑐-limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but vector
as well

• Can identify vector mesons with gauge multiplets of a minimally broken SU(2)𝐿 ⊗ SU(2)𝑅 ⊗ U(1)𝑉
gauge model [Phys. Rev. Lett. 56, 1035 (1986)]

• The 𝜔-meson can be introduced by gauging the U(1) vector symmetry, and it couples anomalously
through the gauged Wess-Zumino (WZ) term

• Skyrme stabilizing term related to the effects of the 𝜌-meson field in the infinite 𝜌-meson mass
limit

• Sextic term represents an infinte mass limit of the 𝜔-meson field
• Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite mass
vector mesons
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• The 𝜔-meson can be introduced by gauging the U(1) vector symmetry, and it couples anomalously
through the gauged Wess-Zumino (WZ) term

• Skyrme stabilizing term related to the effects of the 𝜌-meson field in the infinite 𝜌-meson mass
limit

• Sextic term represents an infinte mass limit of the 𝜔-meson field
• Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite mass
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The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
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2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate
• Static Lagrangian not bounded below⇒ non-trivial extremization
• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate
• Static Lagrangian not bounded below⇒ non-trivial extremization
• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate

• Static Lagrangian not bounded below⇒ non-trivial extremization
• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate
• Static Lagrangian not bounded below⇒ non-trivial extremization

• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate
• Static Lagrangian not bounded below⇒ non-trivial extremization
• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• Adkins and Nappi 𝜔-Skyrme Lagrangian is [Phys. Lett. B 137, 251–256 (1984)]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id2 −𝜑) −

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
𝑚2𝜔
2ℏ3
𝜂𝜇𝜈𝜔𝜇𝜔𝜈 −

1
4ℏ
𝜂𝜇𝛼𝜂𝜈𝛽𝜔𝜇𝜈𝜔𝛼𝛽 + 𝛽𝜔𝜔𝜇B

𝜇

• Interaction (WZ) term 𝛽𝜔𝜔𝜇B
𝜇 describes coupling of the 𝜔-meson to three pions

• Coupling constant 𝛽𝜔 related to the 𝜔 → 𝜋+𝜋−𝜋0 decay rate
• Static Lagrangian not bounded below⇒ non-trivial extremization
• Multisoliton solutions first constructed, within the rational map ansatz, by Sutcliffe for 𝐵 = 1, … , 4
[Phys. Rev. D 79, 085014 (2009)]

• Static problem reformulated and true static energy minimizers constructed up to 𝐵 = 8 [J. High
Energ. Phys. 07, 184 (2020)]

Paul Leask SIG XII 20/42



Skyrmion crystals stabilized by ω-mesons

The 𝜔-Skyrme model

• In every Yang–Mills theory, the canonical momentum conjugate to the temporal component of the
gauge field vanishes identically [Nucl. Phys. A 526, 453–478 (1991)],

𝑝0 =
𝜕L

𝜕(𝜕0𝜔0)
= 0

• Constitutes a primary constraint of the theory
• Dirac–Bergmann algorithm (singular Lagrangian→ constrained Hamiltonian system):
conservation of this primary constraint in time results in a secondary constraint of the form

𝛽𝜔B0 + 𝑚
2
𝜔𝜔0 − 𝜕𝜇𝑝𝜇 = 0

statics−−−−−→ (−∇2 + 𝑚2𝜔) 𝜔0 = −𝛽𝜔B0

• Can be solved and used to eliminate the constrained degree of freedom, 𝜔0
• Coincides with Euler–Lagrange equation from variation of L w.r.t 𝜔0
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Skyrmion crystals stabilized by ω-mesons

Geometric formulation of the 𝜔-Skyrme model
• Skyrme field: 𝜑 ∶ (𝑀, 𝑔) → (𝐺, ℎ)

• 𝑀 an oriented Riemannian manifold, and 𝐺 a compact Riemannian manifold
• Omega meson 𝜔 = 𝜔𝜇d𝑥

𝜇 ∈ Ω1(𝑀), 𝜔0 ∈ 𝐶
∞(𝑀)

• Volume form Ξ = volℎ/|𝐺| ⇒ B0 = ∗𝑔𝜑
∗Ξ

• Statics: constrained variational problem [J. High Energ. Phys. 07, 184 (2020)]

𝐸(𝜑, 𝑔) = ∫
𝛭
(1
8
∣d𝜑∣2 + 1

4
(𝑉 ∘ 𝜑) + 1

2
∣d𝜔0∣

2 + 1
2
𝜔20) vol𝑔 ≥ 0,

subject to the constraint
(Δ𝑔 + 1) 𝜔0 = −𝑐𝜔 ∗ 𝜑

∗Ξ, 𝑐𝜔 =
𝑚𝜔𝛽𝜔
𝐹𝜋

• Critical points of this are solutions of the Euler–Lagrange equations associated to the
unconstrained Lagrangian L

• The constraint can be solved by a non-linear conjugate gradient method
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Skyrmion crystals stabilized by ω-mesons

Topological energy bound
• Define B0 = ∗𝜑

∗Ξ such that 𝜑∗Ξ = B0 vol𝑔

• Then, the topological charge can be expressed as

(Δ𝑔 + 1) 𝜔0 = −𝑐𝜔 ∗ 𝜑
∗Ξ → 𝐵 = ∫

𝛭
𝜑∗Ξ = − 1

𝑐𝜔
∫
𝛭
(Δ𝑔 + 1) 𝜔0 vol𝑔 = −

1
𝑐𝜔
∫
𝛭
𝜔0 vol𝑔

• Cauchy–Schwartz inequality:

𝐵2 = 1
𝑐2𝜔
(∫
𝛭
𝜔0 vol𝑔)

2
≤ 1
𝑐2𝜔
(∫
𝛭
𝜔20 vol𝑔) (∫

𝛭
1 vol𝑔) =

|𝑀|
𝑐2𝜔
∫
𝛭
𝜔20 vol𝑔

• Yields a simple lower topological bound on the static energy,

𝐸 ≥ 1
2
∫
𝛭
𝜔2 vol𝑔 ≥

𝐵2𝑐2𝜔
2|𝑀|

𝛭=T3−−−−−→ 𝐸 ≥
𝐵2𝑐2𝜔
2√𝑔
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Skyrmion crystals stabilized by ω-mesons

𝜔-Skyrme stress tensor

• The stress-energy tensor 𝑆 = 𝑆𝑖𝑗d𝑥
𝑖d𝑥𝑗 associated to the energy

𝐸(𝜑, 𝑔) = ∫
𝛭
(1
8
∣d𝜑∣2 + 1

4
(𝑉 ∘ 𝜑) + 1

2
∣d𝜔0∣

2 + 1
2
𝜔20) vol𝑔,

subject to the constraint
(Δ𝑔 + 1) 𝜔0 = −𝑐𝜔 ∗ 𝜑

∗Ξ,

is the section of Sym2(𝑇∗𝑀) given by [J. High Energ. Phys. 06, 116 (2024)]]

𝑆(𝜑, 𝑔) = ( 1
16
|d𝜑|2 + 1

8
(𝑉 ∘ 𝜑) − 1

4
|d𝜔0|

2 − 1
4
𝜔20) 𝑔 − (

1
8
𝜑∗ℎ − 1

2
d𝜔0 ⊗ d𝜔0)

• Coincides with stress tensor of the unconstrained problem
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Skyrmion crystals stabilized by ω-mesons

𝜔-skyrmion crystals

(a) SC1/2 crystal (b) 𝛼 crystal

(c) multiwall crystal (d) chain crystal

Crystal 𝑐𝜔 𝐸0 (MeV) 𝑛0 (fm
−3)

SC1/2 98.4 716.6 0.128
𝛼 98.4 715.0 0.125

chain 98.4 715.0 0.125
multiwall 98.4 715.0 0.125
SC1/2 34.7 860.6 0.526
𝛼 34.7 859.6 0.526

multiwall 34.7 859.3 0.515
chain 34.7 859.1 0.513
SC1/2 14.34 925.6 0.060
chain 14.34 922.2 0.052
𝛼 14.34 922.1 0.051

multiwall 14.34 917.3 0.047
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Skyrmion crystals stabilized by ω-mesons

Bethe–Weizsäcker semi-empirical mass formula

• Can use skyrmion crystals to estimate coefficients in the Bethe–Weizsäcker SEMF

𝐸𝑏 = 𝑎𝑉𝐵 − 𝑎𝑆𝐵
2/3 − 𝑎𝐶

𝑍(𝑍 − 1)
𝐵1/3

− 𝑎𝛢
(𝑁 − 𝑍)2

𝐵
+ 𝛿(𝑁, 𝑍).

• Empirically-determined values [Phys. Rev. C 73, 014309 (2006)]:
• 𝑎𝑉 ≃ 15.7 − 16.0MeV
• 𝑎𝑆 ≃ 17.3 − 18.4MeV
• 𝑎𝐶 ≃ 0.625MeV
• 𝑎𝛢 ≃ 23.7MeV

• Attempts so far:

• L24: 𝑎𝑉 = 136MeV and 𝑎𝑆 = 320MeV from half-skyrmion crystal chunks [Nucl. Phys. A 596, 611–630 (1996)]
• L024: 𝑎𝐶 = 0.608MeV from 𝛼-particle approximation [Phys. Rev. C 99, 044312 (2019)]
• L0246: 𝑎𝛢 ∼ 𝑆𝛮(0) = 23.8MeV from multiwall crystal [Phys. Rev. D 109, 056013 (2024)]
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Skyrmion crystals stabilized by ω-mesons

𝛼-particle approximation to the SEMF
• Bethe–Weizsäcker SEMF

𝐸𝑏 = 𝑎𝑉𝐵 − 𝑎𝑆𝐵
2/3 − 𝑎𝐶

𝑍(𝑍 − 1)
𝐵1/3

− 𝑎𝛢
(𝑁 − 𝑍)2

𝐵
+ 𝛿(𝑁, 𝑍)

• Method: approach the SEMF using APA with 𝑛3 𝛼-particles
• Energy of a 𝐵 = 4𝑛3 chunk in the APA:

𝐸𝛣
chunk

=
𝐸𝛼
crystal

4
𝐵 + 𝐸chunk𝑆 , 𝐸chunk𝑆 = 6𝑛2𝐸𝛼

face
=
6𝐸𝛼

face

42/3
𝐵2/3

• Classical binding energy of an isospin symmetric chunk:

𝐸𝑏 = 𝐵𝐸1 − 𝐸
𝛣
chunk

= (𝐸1 −
𝐸𝛼
crystal

4
) 𝐵 −

3𝐸𝛼
face

3√2
𝐵2/3, ⇒ 𝑎𝑉 = 𝐸1 −

𝐸𝛼
crystal

4
, 𝑎𝑆 =

3𝐸𝛼
face

3√2

• Only need to compute the nucleon mass 𝐸1, crystal energy 𝐸
𝛼
crystal

and the energy of a single face
of an 𝛼-particle 𝐸𝛼

face
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face

3√2
𝐵2/3, ⇒ 𝑎𝑉 = 𝐸1 −

𝐸𝛼
crystal

4
, 𝑎𝑆 =

3𝐸𝛼
face

3√2

• Only need to compute the nucleon mass 𝐸1, crystal energy 𝐸
𝛼
crystal

and the energy of a single face
of an 𝛼-particle 𝐸𝛼

face
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Skyrmion crystals stabilized by ω-mesons

• Experimental:
• 𝑎𝑉 ≃ 15.7 − 16.0MeV
• 𝑎𝑆 ≃ 17.3 − 18.4MeV

• L24-Skyrme model:
• Predicted: 𝑎𝑉 = 136MeV
• Predicted: 𝑎𝑆 = 320MeV

• L024-Skyrme model:
• Predicted: 𝑎𝑉 = 18.1MeV
• Predicted: 𝑎𝑆 = 75.5MeV

• 𝜔-Skyrme model:
• Predicted: 𝑎𝑉 = 15.6MeV
• Predicted: 𝑎𝑆 = 18.6MeV
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Skyrmion crystals stabilized by ω-mesons

Compressibility of 𝜔-skyrmion Matter
• Energy of isospin symmetric nuclear matter

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0/𝐸0 ≈ 0.260

• Can compute the compression modulus via

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

• Fixed density variations requires replacing 𝑆𝑖𝑗 by its projection 𝑆𝑖𝑗 −
1

Tr𝑔(𝑔)
𝑆𝑘𝑙𝑔

𝑘𝑙𝑔𝑖𝑗
• Ground state crystal with the lowest B.E. coupling constant: multiwall with 𝑐𝜔 = 14.34
• We find 𝐸0 = 917MeV and 𝐾0 = 370MeV ⇒ 𝐾0/𝐸0 = 0.403

Paul Leask SIG XII 29/42



Skyrmion crystals stabilized by ω-mesons

Compressibility of 𝜔-skyrmion Matter
• Energy of isospin symmetric nuclear matter

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0/𝐸0 ≈ 0.260

• Can compute the compression modulus via

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

• Fixed density variations requires replacing 𝑆𝑖𝑗 by its projection 𝑆𝑖𝑗 −
1

Tr𝑔(𝑔)
𝑆𝑘𝑙𝑔

𝑘𝑙𝑔𝑖𝑗
• Ground state crystal with the lowest B.E. coupling constant: multiwall with 𝑐𝜔 = 14.34
• We find 𝐸0 = 917MeV and 𝐾0 = 370MeV ⇒ 𝐾0/𝐸0 = 0.403

Paul Leask SIG XII 29/42



Skyrmion crystals stabilized by ω-mesons

Compressibility of 𝜔-skyrmion Matter
• Energy of isospin symmetric nuclear matter

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0/𝐸0 ≈ 0.260

• Can compute the compression modulus via

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

• Fixed density variations requires replacing 𝑆𝑖𝑗 by its projection 𝑆𝑖𝑗 −
1

Tr𝑔(𝑔)
𝑆𝑘𝑙𝑔

𝑘𝑙𝑔𝑖𝑗

• Ground state crystal with the lowest B.E. coupling constant: multiwall with 𝑐𝜔 = 14.34
• We find 𝐸0 = 917MeV and 𝐾0 = 370MeV ⇒ 𝐾0/𝐸0 = 0.403

Paul Leask SIG XII 29/42



Skyrmion crystals stabilized by ω-mesons

Compressibility of 𝜔-skyrmion Matter
• Energy of isospin symmetric nuclear matter

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0/𝐸0 ≈ 0.260

• Can compute the compression modulus via

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

• Fixed density variations requires replacing 𝑆𝑖𝑗 by its projection 𝑆𝑖𝑗 −
1

Tr𝑔(𝑔)
𝑆𝑘𝑙𝑔

𝑘𝑙𝑔𝑖𝑗
• Ground state crystal with the lowest B.E. coupling constant: multiwall with 𝑐𝜔 = 14.34

• We find 𝐸0 = 917MeV and 𝐾0 = 370MeV ⇒ 𝐾0/𝐸0 = 0.403

Paul Leask SIG XII 29/42



Skyrmion crystals stabilized by ω-mesons

Compressibility of 𝜔-skyrmion Matter
• Energy of isospin symmetric nuclear matter

𝐸(𝑛𝛣)/𝐵 = 𝐸0 +
1
2
𝐾0
(𝑛𝛣 − 𝑛0)

2

9𝑛20
+O ((𝑛𝛣 − 𝑛0)

3) , 𝐾0/𝐸0 ≈ 0.260

• Can compute the compression modulus via

𝐾0 =
9𝑛20
𝐵cell

𝜕2𝐸cell
𝜕𝑛2𝛣

∣
𝑛𝛣=𝑛0

• Fixed density variations requires replacing 𝑆𝑖𝑗 by its projection 𝑆𝑖𝑗 −
1

Tr𝑔(𝑔)
𝑆𝑘𝑙𝑔

𝑘𝑙𝑔𝑖𝑗
• Ground state crystal with the lowest B.E. coupling constant: multiwall with 𝑐𝜔 = 14.34
• We find 𝐸0 = 917MeV and 𝐾0 = 370MeV ⇒ 𝐾0/𝐸0 = 0.403

Paul Leask SIG XII 29/42



Rho mesons in the Skyrme model



Rho mesons in the Skyrme model

Rho mesons in the Skyrme model
• Main difference between coupling to 𝜌-mesons and 𝜔-mesons: 𝜔-meson interacts with the
baryon current, 𝜌-meson interacts with the vector pion current

• Adkins 𝜌 − 𝜋 Lagrangian is [Phys. Rev. D 33, 193 (1986)]

L =
𝐹2𝜋
16ℏ

Tr (𝜕𝜇𝑈
†𝜕𝜇𝑈) + ℏ

32𝑒2
Tr ([(𝜕𝜇𝑈)𝑈

†, (𝜕𝜈𝑈)𝑈
†]
2
) + 1

8ℏ3
𝐹2𝜋𝑚

2
𝜋 (Tr(𝑈) − 2)

− 1
8ℏ
Tr (𝑅†𝜇𝜈𝑅

𝜇𝜈) + 1
4ℏ3
𝑚2𝜌 Tr (𝑅

†
𝜇𝑅

𝜇) + 𝛼 Tr (𝑅𝜇𝜈𝜕
𝜇𝑈†𝑈𝜕𝜈𝑈†)

• Rho meson field is treated as the 2 × 2 four-vector 𝑅𝜇 = 𝜌
0
𝜇 + 𝑖𝜏

𝑎𝜌𝑎𝜇
• Chirally invariant constraint Tr(𝑅†𝜇𝑈) = 0 needed to reduce number of d.o.f. to necessary amount
for unit isospin

• Meissner considered an alternative approach by replacing Skyrme term with sextic term
1
32𝑒2

Tr ([(𝜕𝜇𝑈)𝑈
†, (𝜕𝜈𝑈)𝑈

†]
2
) → 1

4
𝑐26 Tr (𝐵𝜇𝐵

𝜇) [Phys. Lett. B 185, 399–402 (1987)]
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Skyrmion crystals coupled to ρ-mesons

The 𝜌-Skyrme model

• Rho meson 𝑅 = 𝑅𝜇d𝑥
𝜇 ∈ Ω1(𝑀) ⊗ 𝔰𝔲(2) where 𝑅𝜇 = 𝑖𝜌

𝑎
𝜇𝜏
𝑎

• The 𝜌-Skyrme Lagrangian is [arXiv:2405.20757]

L = − 1
8ℏ3
𝐹2𝜋𝑚

2
𝜋 Tr (Id − 𝜑) +

𝐹2𝜋
16ℏ

𝜂𝜇𝜈 Tr(𝐿𝜇𝐿𝜈) +
ℏ
32𝑒2

𝜂𝜇𝛼𝜂𝜈𝛽 Tr ([𝐿𝜇, 𝐿𝜈][𝐿𝛼, 𝐿𝛽])

+
𝑚2𝜌
4ℏ3
𝜂𝜇𝜈 Tr (𝑅†𝜇𝑅𝜈) −

1
8ℏ
𝜂𝜇𝛼𝜂𝜈𝛽 Tr (𝑅†𝜇𝜈𝑅𝛼𝛽) +

1
2
𝜂𝜇𝛽𝜂𝜈𝛾𝛼 Tr (𝑅𝜇𝜈[𝐿𝛽, 𝐿𝛾])

• New interaction term includes the 𝜌𝜋𝜋 vertex L𝜌𝜋𝜋 = 2𝛼𝑚
2
𝜌𝜖𝑎𝑏𝑐𝜌

𝜈
𝑐𝜋𝑎𝜕𝜈𝜋𝑏
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• New interaction term includes the 𝜌𝜋𝜋 vertex L𝜌𝜋𝜋 = 2𝛼𝑚
2
𝜌𝜖𝑎𝑏𝑐𝜌

𝜈
𝑐𝜋𝑎𝜕𝜈𝜋𝑏
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Skyrmion crystals coupled to ρ-mesons

Topological energy bound
• The 𝜌-Skyrme Lagrangian in adimensional units is

𝐿 = 1
2
⟨d𝜑,d𝜑⟩

𝐿2
−∫

𝛭
𝑉 ∘ 𝜑 vol𝑔 −

1
4
⟨𝜑∗Ω,𝜑∗Ω⟩

𝐿2
+ 8 {𝑀2

𝜌 ⟨𝑅, 𝑅⟩𝐿2 +
1
2
⟨d𝑅,d𝑅⟩

𝐿2
+ 𝑐𝛼 ⟨d𝑅, 𝜑

∗Ω⟩
𝐿2
}

• Bogomolny trick (completing the square):
1
2
⟨d𝑅,d𝑅⟩

𝐿2
+ 𝑐𝛼 ⟨d𝑅, 𝜑

∗Ω⟩
𝐿2
= 1
2
⟨d𝑅 + 𝑐𝛼𝜑

∗Ω,d𝑅 + 𝑐𝛼𝜑
∗Ω⟩

𝐿2
− 1
2
𝑐2𝛼 ⟨𝜑

∗Ω,𝜑∗Ω⟩
𝐿2

• Then, the energy can be expressed as

𝐸 = 1
2
⟨d𝜑,d𝜑⟩

𝐿2
+∫

𝛭
𝑉 ∘ 𝜑 vol𝑔 + (

1
4
− 4𝑐2𝛼 ) ⟨𝜑

∗Ω,𝜑∗Ω⟩
𝐿2
+ 8𝑀2

𝜌 ⟨𝑅, 𝑅⟩𝐿2 + 4 ⟨d𝑅 + 𝑐𝛼𝜑
∗Ω,d𝑅 + 𝑐𝛼𝜑

∗Ω⟩
𝐿2

≥ 1
2
⟨d𝜑,d𝜑⟩

𝐿2
+ (1
4
− 4𝑐2𝛼 ) ⟨𝜑

∗Ω,𝜑∗Ω⟩
𝐿2

≥ 24𝜋2√(1
4
− 4𝑐2𝛼 ) |𝐵| ≥ 0 ⇒ 1

4
− 4𝑐2𝛼 ≥ 0 ⇒ 𝑐𝛼 ≤

1
4
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Skyrmion crystals coupled to ρ-mesons

𝐵 = 1 hedgehog 𝜌-skyrmion
• Standard hedgehog ansatz for Skyrme field

𝜑(𝑟, 𝜃, 𝜙) = (cos𝑓(𝑟), sin𝑓(𝑟)𝑛⃗𝛨(𝜃, 𝜙)) , 𝑛⃗𝛨 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃)

• Most general form for the spin-1 𝜌-field is

𝑅𝛨𝑖 = 𝑖𝜌
𝑎
𝑖 𝜏
𝑎, 𝜌𝑎𝑖 = 𝜖𝑎𝑖𝑗𝑛

𝑗
𝛨𝜉(𝑟)

• Leads to a coupled pair of ODEs that can be solved with a multishooting method
• Soliton must be bounded in space, the appropriate boundary conditions are

𝑓(0) = 𝜋, 𝑓(∞) = 0, 𝜉(0) = 0, 𝜉(∞) = 0.

• Skyrme radial profile weakly affected by 𝜌-meson→ robustness of the hedgehog skyrmion
[arXiv:2405.05731]
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Skyrmion crystals coupled to ρ-mesons

𝐵 = 1 hedgehog 𝜌-skyrmion
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Skyrmion crystals coupled to ρ-mesons

𝜌-Skyrme stress tensor

• The stress-energy tensor 𝑆 = 𝑆𝑖𝑗d𝑥
𝑖d𝑥𝑗 of 𝜑 ∶ (𝑀, 𝑔) → (𝐺, ℎ), associated to the energy

𝐸(𝜑, 𝜌, 𝑔) = ∫
𝛭
(1
2
|d𝜑|2 + 1

4
|𝜑∗Ω|2 + (𝑉 ∘ 𝜑) + 8𝑀2

𝜌 |𝑅|
2 + 4|d𝑅|2 + 8𝑐𝛼| ⟨d𝑅, 𝜑

∗Ω⟩ |2) vol𝑔,

is the section of Sym2(𝑇∗𝑀) given by

𝑆(𝜑, 𝑔) = 1
2
[1
2
|d𝜑|2 + 1

4
|𝜑∗Ω|2 + (𝑉 ∘ 𝜑) + 8𝑀2

𝜌 |𝑅|
2 + 4|d𝑅|2 + 8𝑐2𝛼 | ⟨d𝑅, 𝜑

∗Ω⟩ |2] 𝑔

− (1
2
𝜑∗ℎ − 1

4
𝜑∗Ω ⋅ 𝜑∗Ω − 8𝑀2

𝜌𝑅 ⊗ 𝑅 − 4d𝑅 ⋅ d𝑅 − 8𝑐𝛼d𝑅 ⋅ 𝜑
∗Ω)

• Much easier to derive than the 𝜔-meson case as there is no additional constraint!
• Proof is a simple extension of the standard L024-Skyrme model proof
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Skyrmion crystals coupled to ρ-mesons

Derrick scaling

• Like the massive L024-Skyrme model, we can also derive virial constraints

• Write the energy as

𝐸(𝜑, 𝜌, 𝑔) = ∫
𝛭
((𝑉 ∘ 𝜑)⏟

E0

+ 1
2
|d𝜑|2 + 8𝑀2

𝜌 |𝑅|2⏟⏟⏟⏟⏟
E2

+ 1
4
|𝜑∗Ω|2 + 4|d𝑅|2 + 8𝑐𝛼| ⟨d𝑅, 𝜑∗Ω⟩ |2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

E4

) vol𝑔

• We obtain the “usual” Derrick scaling constraint via

∫
𝛭
Tr𝑔(𝑆) vol𝑔 =

1
2
∫
𝛭
[3(𝑉 ∘ 𝜑) + 1

2
|d𝜑|2 + 8𝑀2

𝜌 |𝑅|
2 − 1
4
|𝜑∗Ω|2 − 4|d𝑅|2 − 8𝑐2𝛼 | ⟨d𝑅, 𝜑

∗Ω⟩ |2] vol𝑔

= 1
2
(3𝐸0 + 𝐸2 − 𝐸4) = 0 ⇒ 𝐸2 − 𝐸4 + 3𝐸0 = 0

• Here we have used the identities Tr𝑔 𝜑
∗ℎ = |d𝜑|2 and Tr𝑔𝐴 ⋅ 𝐵 = −2| ⟨𝐴, 𝐵⟩ |

2
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Tr𝑔(𝑆) vol𝑔 =

1
2
∫
𝛭
[3(𝑉 ∘ 𝜑) + 1

2
|d𝜑|2 + 8𝑀2

𝜌 |𝑅|
2 − 1
4
|𝜑∗Ω|2 − 4|d𝑅|2 − 8𝑐2𝛼 | ⟨d𝑅, 𝜑

∗Ω⟩ |2] vol𝑔

= 1
2
(3𝐸0 + 𝐸2 − 𝐸4) = 0 ⇒ 𝐸2 − 𝐸4 + 3𝐸0 = 0

• Here we have used the identities Tr𝑔 𝜑
∗ℎ = |d𝜑|2 and Tr𝑔𝐴 ⋅ 𝐵 = −2| ⟨𝐴, 𝐵⟩ |

2

Paul Leask SIG XII 38/42



Skyrmion crystals coupled to ρ-mesons

Derrick scaling

• Like the massive L024-Skyrme model, we can also derive virial constraints
• Write the energy as

𝐸(𝜑, 𝜌, 𝑔) = ∫
𝛭
((𝑉 ∘ 𝜑)⏟

E0

+ 1
2
|d𝜑|2 + 8𝑀2

𝜌 |𝑅|2⏟⏟⏟⏟⏟
E2

+ 1
4
|𝜑∗Ω|2 + 4|d𝑅|2 + 8𝑐𝛼| ⟨d𝑅, 𝜑∗Ω⟩ |2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

E4

) vol𝑔

• We obtain the “usual” Derrick scaling constraint via

∫
𝛭
Tr𝑔(𝑆) vol𝑔 =

1
2
∫
𝛭
[3(𝑉 ∘ 𝜑) + 1

2
|d𝜑|2 + 8𝑀2

𝜌 |𝑅|
2 − 1
4
|𝜑∗Ω|2 − 4|d𝑅|2 − 8𝑐2𝛼 | ⟨d𝑅, 𝜑

∗Ω⟩ |2] vol𝑔

= 1
2
(3𝐸0 + 𝐸2 − 𝐸4) = 0 ⇒ 𝐸2 − 𝐸4 + 3𝐸0 = 0

• Here we have used the identities Tr𝑔 𝜑
∗ℎ = |d𝜑|2 and Tr𝑔𝐴 ⋅ 𝐵 = −2| ⟨𝐴, 𝐵⟩ |

2

Paul Leask SIG XII 38/42



Skyrmion crystals coupled to ρ-mesons

Multi-skyrmions with 𝜌-mesons

1 1.5 2 2.5 3 3.5 4
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0.98

0.99

1 • B.E. decreases with increasing
coupling 𝑐𝛼

• 𝛼-particle clustering observed for high
coupling, similar to [Phys. Rev. Lett.
121, 232002 (2018)]

• Energy difference between zero
density crystal and ground state
(𝐸(𝑛𝛣 → 0) − 𝐸(𝑛0)) should decrease

• Hence the curvature about 𝐸0 should
also decrease

⇒ Lower compression modulus 𝐾0
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Skyrmion crystals coupled to ρ-mesons

Compressibility of 𝜌-skyrmion Matter

0.5 1.0 1.5 2.0 2.5
n/n0

1.00

1.01
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1.05

1.06

E
/E

0

cα = 0

cα = 0.125

cα = 0.166

cα = 0.208

cα = 0.220

• Ground state crystal found to be the
𝛼-particle crystal for all 𝑐𝛼

• 𝐾0 decreases with binding energies

𝑐𝛼 𝐾0/𝐸0 𝐾0(MeV) B.E. (%)
0 1.170 1080 5.54

0.125 0.985 909 5.36
0.166 0.778 718 5.00
0.208 0.461 425 4.25
0.220 0.381 351 3.85
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Concluding remarks

Concluding remarks

• We have shown that coupling to vector mesons:

• resolves the compressibility issue in the Skyrme model
• reduces binding energies
• accurately estimates coefficients in the SEMF

• Further work:

• Obtain nuclear matter equation of state via considering skyrmions coupled to both 𝜌 and 𝜔mesons
• Isospin asymmetric nuclear matter: semi-classical quantization of the vector meson theory
• Numerically time consuming, can we find approximations to the crystal solutions in the vector meson theories?

• Half crystal approximation for skyrmions coupled to vector mesons [Nucl. Phys. A 736, 129–145 (2004)]
• Approximate multiwall crystals? [J. Phys. A: Math. Theor. 42, 482001 (2009)]
• Inhomogeneous planar crystals from instantons? [Nucl. Phys. A 989, 231–245 (2019)]
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