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° Neutron stars with crusts previously obtained by interpolating between high density crytl
Skyrme EoS and low density nuclear EoS [Phys. Lett. B 811 135928 (2020)] -

Neutron stars

* Can we obtain a single EoS that yields neutron stars with crusts? Final remarks
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° It was initially believed that descriptions of the low energy regime of QCD must contain
explicit quarks
° Witten showed quarks can be integrated away [Nucl. Phys. B 160 57-115 (1979)]
= Degrees of freedom are hadrons (mesons and baryons)
* In the large N -limit, QCD can be reduced to an effective field theory of mesons

* Skyrme’s idea [Proc. R. Soc. Lond. A 260 127-138 (1961)]: effective mesonic Lagrangian
involving only pions, with baryons emerging as stable topological solitons
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* Exhibits short range w-meson-like repulsion while still describing scalar meson effects

* Baryon d.o.f. not explicitly visible — topology: Homotopy invariant <> Baryon number
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Generalized Skyrme Lagrangian

* Generalized Skyrme model includes a sextic term [Phys. Lett. B 154, 101-106 (1985)], which
is related to the w-Skyrme model [Phys. Lett. B 137, 251-256 (1984)]:
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Exhibits short range w-meson-like repulsion while still describing scalar meson effects

Baryon d.o.f. not explicitly visible — topology: Homotopy invariant <> Baryon number

7(SU(2)) =Z> B = /R} $Px/g B, B = Y ‘/_eW’T (L, L,L,)

Baryons realized as non-perturbative excitations of the pions = solutions of the
Euler-Lagrange field equations - topological solitons (skyrmions)
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* The hedgehog field is p(%) = exp (if ()% - 7)

* Known as hedgehogs because the pion fields point radially outwards skyemion braes;
* Profile function f(r) must satisfy the B.C.s f(c) = 0 and f(0) = # Paul Leask
* The hedgehog solution has baryon number B = 1 since Motive
Sk
sin” £d
B-__1 / f & 4 f(o
27[2 V d Skyrm el

Skyrmion solutions

Sk tals
.

For the hedgehog ansatz, the (massless) static energy is

Ml=47z/0w[rz(j—]:) +2sin f(1+(df)) sir:;*f d
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B =1 #& skyrmion [Proc. R. Soc. Lond. A 260 127-138 (1961)]

* The hedgehog field is p(%) = exp (if ()% - 7)

* Known as hedgehogs because the pion fields point radially outwards skyemion braes;
* Profile function f(r) must satisfy the B.C.s f(c) = 0 and f(0) = # Paul Leask
* The hedgehog solution has baryon number B = 1 since Motive
Sk
sin® £ df .
B = _27Z2 / ;,. d f(o Skyrme model

Skyrmion solutions

Sk tals
.

For the hedgehog ansatz, the (massless) static energy is

Ml=47z/0w[rz(j—]:) +2sin f(1+(df)) szi dr ;

E-L equations reduce to a 2nd order non-linear ODE that can only be solved numerically,

dr\* sin” /]
(dr) —1- 72 __0

2
(r + 2 sin f)df+2;fiiv+sm2f
7
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B=1*%

skyrmion [Proc. R. Soc. Lond. A 260 127-138 (1961)]
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How to construct larger Skyrmions

Neutron stars from
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° Asymptotic interactions of two B = 1 skyrmions have preferred orientation (attractive
channel) [Commun. Math. Phys. 245 123-147 (2004)]
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° Asymptotic interactions of two B = 1 skyrmions have preferred orientation (attractive
channel) [Commun. Math. Phys. 245 123-147 (2004)]
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favourable being a FCC lattice [Phys. Lett. B 208 491-494 (1988)]
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channel) [Commun. Math. Phys. 245 123-147 (2004)]

* Can place B = 1 Skyrmions in the attractive channel on a subcluster of a bravais lattice, most  [[EEEs_=—=-
favourable being a FCC lattice [Phys. Lett. B 208 491-494 (1988)] S mode

* Skyrme fields can be constructed using a rational map approximation (RMA) [Nucl. Phys.
B 510, 507-537 (1998)]
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Asymptotic interactions of two B = 1 skyrmions have preferred orientation (attractive
channel) [Commun. Math. Phys. 245 123-147 (2004)] et

Can place B = 1 Skyrmions in the attractive channel on a subcluster of a bravais lattice, most
favourable being a FCC lattice [Phys. Lett. B 208 491-494 (1988)]

Skyrme fields can be constructed using a rational map approximation (RMA) [Nucl. Phys. |B
B 510, 507-537 (1998)] T ‘

One could also relate Skyrmions to instantons via the Atiyah—Manton approximation e
[Phys. Lett. B 222 438-442 (1989)] or using ADHM data [ Nonlinearity 35, 3944-3990 (2022)]
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How to construct larger Skyrmions

Asymptotic interactions of two B = 1 skyrmions have preferred orientation (attractive
channel) [Commun. Math. Phys. 245 123-147 (2004)]

Can place B = 1 Skyrmions in the attractive channel on a subcluster of a bravais lattice, most
favourable being a FCC lattice [Phys. Lett. B 208 491-494 (1988)]

Skyrme fields can be constructed using a rational map approximation (RMA) [Nucl. Phys.

B 510, 507-537 (1998)]

One could also relate Skyrmions to instantons via the Atiyah—Manton approximation
[Phys. Lett. B 222 438-442 (1989)] or using ADHM data [ Nonlinearity 35, 3944-3990 (2022)]

Quite large skyrmions (up to B = 108) have been constructed by gluing a-particles together
[Proc. R. Soc. A 463 261-279 (2007)] or using a multi-layer RMA based on the Skyrme
crystal [Phys. Rev. D 87 0850834 (2013)]
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.
* Identify RM target 52 with spheres of constant latitude on 53, and RM domain 5 with skyrmion branes
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.

* Identify RM target S* with spheres of constant latitude on 5°, and RM domain S* with
spheres in R? of radius 7.

* Using polar coords for R?, z = tan(4/2) exp(i@), with radius », the RM ansatz is

~ if(r) (1-|R|*> 2R
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.
* Identify RM target S* with spheres of constant latitude on 5°, and RM domain S* with
spheres in R? of radius 7.

* Using polar coords for R?, z = tan(4/2) exp(i@), with radius », the RM ansatz is
_ if(r) (1-|R> 2R
pira) = exp [W ( RRE-1))
* f(r) is a radial profile function with B.C.s f(0) = 7 and f(c) = 0
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.
* Identify RM target S* with spheres of constant latitude on 5°, and RM domain S* with
spheres in R? of radius 7.
* Using polar coords for R?, z = tan(4/2) exp(i@), with radius », the RM ansatz is
if(r) (1-|R? 2R

o(r,2) = exp[1 -{|R|2 ( 21|Q | IR] - 1)],
* f(r) is a radial profile function with B.C.s f(0) = 7 and f(c) = 0
* R(z) = p(2)/4(2) is a rational map of degree B = max(deg p,degg).
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

° Rational maps are functions from 52 — 82, whereas as @ R? > $°.

* Identify RM target S* with spheres of constant latitude on 5°, and RM domain S* with i
spheres in R? of radius 7. Paul Leask
* Using polar coords for R?, z = tan(4/2) exp(i@), with radius », the RM ansatz is Motive
Sk
if(r) (1-|R]* 2R
(V, Z) = €X |: ( 5 Skyrme model
@ p 1 + |R|2 2R |R|2 - 1 Skyrmion solutions

* f(r) is a radial profile function with B.C.s f(0) = 7 and f(c) = 0 ‘ tals
* R(z) = p(2)/4(2) is a rational map of degree B = max(deg p,degg).
° Rational maps for B =1, ..., 4:

B ‘ R(2) ‘ Symmetry "
1 z 0(3) Final remarks
2 2 0Q2)xZ
z3—\6iz
3 V3iz*-1 7;
4| gl | o

2423122 +1
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

* Substituting the RMA into the massless static energy functional yields

My = 47 /Ooorz {(j—{)z + 28 sinzf(((j{—j:)2 + 1) + JSir;jf}dr,

* Jis the purely angular integral to be minimised for choice of rational map R:

j=i/ 1+ |z @ Y 2ideds '
4 1+ [R]Z | dz|) (1+]z]%)?
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Skyrmions from rational maps [Nucl. Phys. B 510, 507-537 (1998)]

* Substituting the RMA into the massless static energy functional yields

My = 4= /O“’Vz {(j—{)z +2B sinzf((i—j:)z + 1) + JSir;jf}dr,

* Jis the purely angular integral to be minimised for choice of rational map R:

g1 / 1+ 3> |dR
T 4w 1+ |R|? | dz

* Optimising ¥ and the profile function /() gives approximate Skyrmions, but further
numerical relaxation is required to find true Skyrmions.

‘ 27idzdz
(1+]2%)*
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B = 2 skyrmion [Phys. Lett. B 195, 235-239 (1987)]
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B =3 skyrmion [Phys. Lett. B 235, 147-152 (1990)]
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B = 4 skyrmion [Phys. Lett. B 235, 147-152 (1990)]
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* Aim: construct an equation of state (EoS) to model neutron stars Uttt
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= We need to understand phases and phase transitions of nuclear matter Skyrmion solutions
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* Ground state of dense nuclear matter has a crystalline structure in the classical and phases of
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Skyrmion crystals

* Skyrme crystals are energy minimizing maps
o :RA, - SUQ), A, = {nl)zl + X, + i Xy i, € Z}

° They are critical and stable w.r.t. variations of the lattice A about A,

* Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism
(with T° = R®/Z%)
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Skyrmion crystals

* Skyrme crystals are energy minimizing maps

p: R*/A, - SU@2), A, = {nl)zl + nz)?z + n3)?3 in, € Z} Motivation

° They are critical and stable w.r.t. variations of the lattice A about A,

* Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism Skyrmion solutions
(with T =R3 / Za) :rlzr:;‘i:srne:r;rfstals
skyrmion matter

F: (T ,9) R? /A, d), (%, %) > xl)-(}'1 + xszz + x3)-f'3 Quantum skyrmion

o o Neutron stars

* The metric on T? is the pullback ¢ = F*d = gijdxidxj> &= XX
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Skyrmion crystals
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* Skyrme crystals are energy minimizing maps

Paul Leask
P R3/Ao - SU(2)> A‘o = {nl)?l + 712)?2 + 7%)?3 tn; € Z} Motivation
kyrm odel
* They are critical and stable w.r.t. variations of the lattice A about A, S
* Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism Skyrmion solutions
(Wlth TS = R3/Z3) ::‘;rx::e:r‘:rfsta[s
skyrmion matter
F:(T° 9 RP/Ad), (x'%, %) > xl)-f] + xszz + x3)-f'3 ey

symm

> >

* The metric on T? is the pullback ¢ = F*d = gijdxidxj, & =X X ’
Final remarks
* Fix Skyrme field to be the map ¢ : T — SU(2)
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Skyrmion crystals
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* Skyrme crystals are energy minimizing maps stomion branes
Paul Leask
o :RA, - SUQ), A, = {”1)?1 + nz)?z + n3)?3 in, € Z} Motivation
Skyrme model
° They are critical and stable w.r.t. variations of the lattice A about A, g
* Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism Syt lifone
(Wlth TS = R3/Z3) ::‘;rx::e:r‘:rfsta[s

skyrmion matter
-

F:(T%g) —» (R¥/Ad), ("4 2%) o &' X + 22X, + X,

> >

* The metric on T? is the pullback ¢ = F*d = gijdxidxj, & =X X
Final remarks

* Fix Skyrme field to be the map ¢ : T — SU(2)

* Vary metric g, with gy = F'd < vary lattice A, with Aj = A
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Skyrmion crystals
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* Skyrme crystals are energy minimizing maps stomion branes
Paul Leask
o :RA, - SUQ), A, = {”1)?1 + nz)?z + n3)?3 in, € Z} Motivation
Skyrme model
° They are critical and stable w.r.t. variations of the lattice A about A, g
* Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism Syt lifone
(Wlth TS = R3/Z3) :rl:‘;r:;‘i::e:r:fsta[s

skyrmion matter
-

F:(T%g) —» (R¥/Ad), ("4 2%) o &' X + 22X, + X,

> >

* The metric on T? is the pullback ¢ = F*d = gijdxidxj> &= XX

2
Y Final remarks

Neutron stars

* Fix Skyrme field to be the map ¢ : T — SU(2)
* Vary metric g, with gy = F'd < vary lattice A, with Aj = A

* Energy minimized over variations of ¢ <= energy minimizing period lattice A,
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Summary of [J. Math. Phys. 64 103503 (2023)]

* For fixed &, -field ¢, there always exists a critical point of My (@, ¢) w.r.t. variations of ¢
and it is in fact a unique c.p. (generalizes to &, ,,-model)

* Four crystal solutions were found for unit cells with charge B = 4

* These are the prcc, @, Pstring and @y, crystals
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Summary of [J. Math. Phys. 64 103503 (2023)]

For fixed Z,,-field ¢, there always exists a critical point of A (@, ¢) w.r.t. variations of ¢
and it is in fact a unique c.p. (generalizes to &, ,,-model)

Four crystal solutions were found for unit cells with charge B = 4
These are the ppcc, @, Pstring and @y, crystals

The ppcc-crystal [Phys. Lett. B 208 491-494 (1988)] can be obtained from a Fourier
series-like expansion as an initial configuration [Nucl. Phys. A 501 801-812 (1989)],

5%, 9% ,
7=-age, m=a\l-5 -5+ 5 and cyclic,

where s, = sin(2zx’ /L) and ¢, = cos(2zx’ /L), with initial metric g = 1,
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Half-skyrmion (FCC) crystal [ Phys. Lett. B 208 491-494 (1988)]
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Summary of [J. Math. Phys. 64 103503 (2023)]

* From @gcc, the other three crystals can be constructed by applying a chiral SO(4)
transformation Q € SO(4), such that ¢ = Q@rcc, and minimizing M, w.r.t. variations of @
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Summary of [J. Math. Phys. 64 103503 (2023)]
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Summary of [J. Math. Phys. 64 103503 (2023)]

Neutron stars from
skyrmion branes

* From @gcc, the other three crystals can be constructed by applying a chiral SO(4)

transformation Q € SO(4), such that ¢ = Q@rcc, and minimizing M, w.r.t. variations of @
and g Motivation
-

Paul Leask
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Summary of [J. Math. Phys. 64 103503 (2023)]

* From @gcc, the other three crystals can be constructed by applying a chiral SO(4)
transformation Q € SO(4), such that ¢ = Q@rcc, and minimizing M, w.r.t. variations of @
and ¢

* These are

*
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Q, Qbrane Qstring

* The @y ne-crystal is the lowest energy solution at all baryon densities 7 = B /V il
* AL = Eilaced — Emin is minimized for the choice of crystal g, .

= Should yield a lower compression modulus than previous studies
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Summary of [J. Math. Phys. 64 103503 (2023)]

l

l

From @rcc, the other three crystals can be constructed by applying a chiral SO(4)
transformation Q € SO(4), such that ¢ = Q@rcc, and minimizing M, w.r.t. variations of @
and ¢

These are
(0,-1, 1,1)/J§) ((0,0,0,1)) ((0,0,1, 1)/\/2)

*

el

Q, Qbrane Qstring

The @pane-crystal is the lowest energy solution at all baryon densities 7 = B /V i1

AE = E;

1
Should yield a lower compression modulus than previous studies

solated — Emin 1S minimized for the choice of crystal g,

Brane crystal is an ideal candidate for dense nuclear matter

Paul Leask

Motivation

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum

crystals and tk

symmetry

Final remarks

Paul Leask — Neutron stars from skyrmion branes



Brane or domain wall crystal [J. Math. Phys. 64 103503 (2023)]

Linking

max(B/2)

12

z
N S () ©

5
5
Y 0 o z
(a) Isosurface plot of the baryon density %, (b) Linking of two preimages
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Varying the metric on T°

* Let g, be a smooth one-parameter family of metrics on T with g =Fd
* Setdg =gl € [(O*T™T?) (symmetric 2-covariant tensor field on T°)
° Inner product on the space of 2-covariant tensor fields (A,B)g = AijgjkBklgli } <

* First variation of M w.r.t. g is Syttt

dag (e, g)
ds
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Varying the metric on T°

Neutron stars from

Let ¢, be a smooth one-parameter family of metrics on T with g =Fd skyrmion branes

* Setdg =gl € [(O*T™T?) (symmetric 2-covariant tensor field on T°)

Paul Leask

Motivation
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Inner product on the space of 2-covariant tensor fields (A,B)g = AijgjkBklgli e——

* First variation of My w.rt. g is g
Skyrmion solutions
dM > rmion crystals
dhlpg)| / &z (S(p.g),3) . S(p,g) € (O*TT?) bt
dj 5=0 IE £ skyrmion matter

* S(p,g) is the stress-energy tensor: crystal
1 1 1 m 1n
Sy=5 [mz Tr(ld—p) - 5¢" Tr(LL) - 126" ¢" Tr({Ly L1IL,, L) - co(B)| g

1 1
+5 Tr(L L) + ¢ M Tr((L, L)L, L)),
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Numerical minimization of the field and lattice

* Fix ¢ : T> — SU(2) and think of the energy as a map E, : SPD; — R such that
EP = }MB(¢|ﬁxed’g)
* We use arrested Newton flow on SPD; to minimize £, w.rt. ¢

* Explicitly, we are solving the system of 2nd order ODEs
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Numerical minimization of the field and lattice

Paul Leask

* Fix ¢ : T> — SU(2) and think of the energy as a map E, : SPD; — R such that
E§p = }MB( ¢|ﬁxed ’g) >m odel
* We use arrested Newton flow on SPD; to minimize £, w.rt. ¢ Vinking I the

* Explicitly, we are solving the system of 2nd order ODEs S——

Skyrmion crystals

d2 and phases of
— l] — v T skyrmion matter
@ (g'lj) / d x‘J—S ’ (g'lj)o B Xt ' X] Quantum n
5=0 crystals and th
where S, = S(@lfixed> £) is the fixed field stress tensor Neutron stars

Final remarks
* In conjunction, we minimize Mg (@, g|ﬁxed) w.r.t. ¢ for some initial field ¢,
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Numerical minimization of the field and lattice

* Fix ¢ : T> — SU(2) and think of the energy as a map E, : SPD; — R such that
EP = }MB(¢|ﬁxed’g)
* We use arrested Newton flow on SPD; to minimize £, w.rt. ¢

* Explicitly, we are solving the system of 2nd order ODEs

d’ ; I

@ (glj) = / d x\/—S]’ (gy)OZ‘Xz‘X;
where S, = S(@|gyed> ) is the fixed field stress tensor

* In conjunction, we minimize Mg (@, g|ﬁxed) w.r.t. ¢ for some initial field ¢,
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An example: the FCC to half-skyrmion crystal

max(B/2) M it from

max(B/5)
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Y 0 0 T
(a) Initial configuration of four B = 1 hedgehogs (b) Relaxed final solution of the cubic crystal of
arranged in the attractive channel on a cubic grid half-skyrmions
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Phases of skyrmion matter

* Consider fixed baryon density 7, variations of My (@, g) w.rt. ¢

y VOIg is required to be invariant under variations g, of the metric:

d

ds

= dg is trace-free, i.e. Tr,(9g) = 0
* Leads to modifying the (fixed ¢ field) stress-energy tensor via the mapping

3 1 3 i
d’'x /g = z/pdx‘/ggfé\gij:O

s=0 VT3

. 1
S, 8,=8,-3 T (S,) ¢
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Phases of skyrmion matter

* Consider fixed baryon density 7, variations of My (@, g) w.rt. ¢

VOIg is required to be invariant under variations g, of the metric:

d

ds
= dg is trace-free, i.e. Tr,(9g) = 0

3 1 3 i
d’'x /g = z/pdx‘/ggfé\glj:O

s=0 VT3
* Leads to modifying the (fixed ¢ field) stress-energy tensor via the mapping
S, 5, =8, - ~Tr (s

o S =53 I(S) e

* Convergence criterion becomes max(%) < tol
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Phases of skyrmion matter

* Consider fixed baryon density 7, variations of My (@, g) w.rt. ¢

VOIg is required to be invariant under variations g, of the metric:

d

ds
= dg is trace-free, i.e. Tr,(9g) = 0

3 1 3 i
d’'x /g = z/pdx‘/ggfé\glj:O

s=0 VT3

* Leads to modifying the (fixed ¢ field) stress-energy tensor via the mapping

. 1
S, 8,=8,-3 T (S,) ¢

* Convergence criterion becomes max(S¢) < tol

° This process enables us to determine an energy-density curve
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Phases of skyrmion matter

Consider fixed baryon density 7 variations of M (@, ¢) w.rt. ¢

Paul Leask
y VOIg is required to be invariant under variations g, of the metric: -
kyrme model
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Final remarks

Convergence criterion becomes max(S¢) < tol

° This process enables us to determine an energy-density curve

* This is key to obtaining an equation of state within our framework
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[sospin quantization

Paul Leask

* Non-renormalizable theory = isospin asymmetry is included by semi-classically quantizing
isospin collective coordinates: @(x) = @(x, ) = A(¢)@p(x)A"(z) [Nucl. Phys. B262133-143 (..

(1985)] S
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[sospin quantization

* Non-renormalizable theory = isospin asymmetry is included by semi-classically quantizing Pt e
isospin collective coordinates: p(x) > ¢(x,7) = A(t)p(x)A"(¢) [Nucl. Phys. B262133-143 |-
(1985)] SR

* Can use a mean-field approximation of a large chunk (B = N B.) in a generic quantum Linking in the
state with fixed eigenvalue [Phys. Rev. D 106 114031 (2022)] Serrmion solutions
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[sospin quantization

* Non-renormalizable theory = isospin asymmetry is included by semi-classically quantizing
isospin collective coordinates: p(x) = @(x,7) = A(¢)@(x) A" (¢) [Nucl. Phys. B 262 133-143
(1985)]

* Can use a mean-field approximation of a large chunk (B = N B.) in a generic quantum
state with fixed eigenvalue [Phys. Rev. D 106 114031 (2022)]

Z-N (1-2y) . .
_ ) __ T NeaiBes 7, is the proton fraction
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[sospin quantization

* Non-renormalizable theory = isospin asymmetry is included by semi-classically quantizing Pt e
isospin collective coordinates: p(x) > ¢(x,7) = A(t)p(x)A"(¢) [Nucl. Phys. B262133-143 |-
(1985)] SR

* Can use a mean-field approximation of a large chunk (B = N B.) in a generic quantum Linking in the
state with fixed eigenvalue [Phys. Rev. D 106 114031 (2022)] Serrmion solutions

Z-N (1_2 ) A X ‘:v\m(;}
_ | ) __ i NeaiBes 7, is the proton fraction e

1‘3 2 2 C

Quantum skyrmion
crystals and the

.. . . . . o« el 2 2 symmetry energy
* I = I; minimizes the isospin energy since by definition /= > I;

Neutron stars

* The isospin correction (per unit cell) to the energy of the crystal is found to be Final remarks

P 2 2
EiSO - 8U33Bcell

Paul Leask — Neutron stars from skyrmion branes



Symmetry energy

° The asymmetry of matter is determined by the isospin asymmetry parameter Py
0= (N - Z)/(N‘I'Z) =1- 2}?7 Paul Leask
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Symmetry energy

* The asymmetry of matter is determined by the isospin asymmetry parameter
I=(N-2)/(N+2)=1-2y,
° Binding energy per baryon number of asymmetric nuclear matter is given by
5 7o = 0.160 fm™
E(”B’ 3) = Ey(ng) + Sy(ng)d* + O(3°), Ey(ny) = 923 MeV
Sy(ng) = 30 MeV
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Symmetry energy

* The asymmetry of matter is determined by the isospin asymmetry parameter
I=(N-2)/(N+2)=1-2y,
° Binding energy per baryon number of asymmetric nuclear matter is given by

E ny = 0.160fm™
E(”B, 3) = Ey(ng) + Sy(n)8” + O(%), Ey(ny) = 923 MeV
Sy (ny) = 30 MeV

* The isospin symmetric binding energy is defined by £y, = My /B
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Symmetry energy

Neutron stars from

* The asymmetry of matter is determined by the isospin asymmetry parameter ot
0= (N - Z)/(N‘I' Z) =1- 2}?7 Paul Leask
° Binding energy per baryon number of asymmetric nuclear matter is given by Motvation
E ny = 0.160 fm™ L"”
E(”B, 9) = En(np) + SN(”B)C;Z + 0(33), Ey(ny) = 923 MeV Skyrme mode
SN(”O) =~ 30 MeV Skyrmion solutions
Skyrmior stals
* The isospin symmetric binding energy is defined by £y, = My /B i
* The symmetry energy S, dictates how the binding energy changes going from symmetric Quantum skyrmion
(0 = 0) to asymmetric (9 # 0) nuclear matter ety ey
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Symmetry energy

* The asymmetry of matter is determined by the isospin asymmetry parameter
I=(N-2)/(N+2)=1-2y,
° Binding energy per baryon number of asymmetric nuclear matter is given by

E ny = 0.160fm™
E(”B, 3) = Ey(ng) + Sy(n)8” + O(%), Ey(ny) = 923 MeV
Sy (ny) = 30 MeV

* The isospin symmetric binding energy is defined by £y, = My /B
The symmetry energy Sy dictates how the binding energy changes going from symmetric
(0 = 0) to asymmetric (9 # 0) nuclear matter

Eiso —

| v
= 3 n
Bcell e 8(]33 cell”B

It is obtained from the quantum isospin energy Sy (75) =

Neutron stars from
skyrmion branes

Paul Leask

Motivation

and pt

skyrmion matter
Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Paul Leask — Neutron stars from skyrmion branes



Symmetry energy

The asymmetry of matter is determined by the isospin asymmetry parameter
0=(N-2)/[(N+2)=1 -2y,

Binding energy per baryon number of asymmetric nuclear matter is given by

r n = 0.160 fm ™
E(”B’ 3) = Ex(ng) + Sy (n5)3” + O(%), Ey(ny) = 923 MeV
Sy () ~ 30 MeV

The isospin symmetric binding energy is defined by £, = My /B

The symmetry energy Sy dictates how the binding energy changes going from symmetric
(0 = 0) to asymmetric (0 # 0) nuclear matter

It is obtained from the quantum isospin energy Sy (73) = BETFBZ = %;Vcenng
* In [arXiv:2306.04533 (2023)], at saturation we find
1o = 0.160 fm ™, Ey(n,) = 912 MeV and Sy, (n,) = 22.7 MeV
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Symmetry energy and the cusp structure
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Symmetry energy and the cusp structure
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Symmetry energy and the cusp structure
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Symmetry energy and the cusp structure
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Symmetry energy and the cusp structure

* Cusp below saturation at
n, ~3ny/4
Symmetry energy at zero density
] 5y (0) = 23.77 MeV | (finite
symmetric nucl. mat.
° Bethe-Weizsacker SEMF
asymmetry energy E, = ﬂASZB
* Can identify
]SN(O) ~a, =237MeV
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Symmetry energy and the cusp structure

* Cusp below saturation at cutron stars from
n, ~3ny/4 '
Symmetry energy at zero density Motivation

Sy (0) =23.77 MeV (finite a——
symmetric nucl. mat.) Linking i the

* Bethe-Weizsacker SEMF
asymmetry energy £, = aASZB i el

Paul Leask

Can identify Skyrmion mater
_ — Quantum skyrmion

SN(O) dA - 23.7 MCV crystals and the

symmetry energy

Cusp origin: phase transition
between infinite isospin
18— : : : : asymmetric nuclear matter
0.5 * 1 15 2 25 3 . . .
ns/no and somewhat isolated finite
nuclear matter

[arXiv:2306.04533 (2023)]
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Particle fractions of zpex matter in S-equilibrium
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° Global charge neutrality by including background of charged leptons n, =n, +n, \}"H
° Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning, HH
Compact Stars (1997)]: Skyrme model

* Electron capture: p+/ > n+y Skyrmion solutions
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Particle fractions of zpex matter in S-equilibrium

* Global charge neutrality by including background of charged leptons n, =n, +n,

° Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning,
Compact Stars (1997)]:
* Electron capture: p+/ > n+y
* f-decay:n — p+1+7

* As ny increases then so too does n, and n, — g, = m, = 105.66 MeV
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* Electron capture: p+/ > n+y Soicnioltion:s

* B-decay:n — p+l+7y St
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= Energetically favourable for muons to appear
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Particle fractions of zpex matter in S-equilibrium

Neutron stars from
skyrmion branes

Paul Leask
° Global charge neutrality by including background of charged leptons n, =n, +n, \}" i
* Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning, r——
Compact Stars (1997)]: Skyrme model
* Electron capture: p+/ > n+y Skyrmion solutions
* B-decay:n — p+l+7y sy
* As ny increases then so too does 7, and n, — u, > m, =105.66 MeV Qmmmsky‘:mm
= Energetically favourable for muons to appear ;;)::Lstf;:r::egy
* The simultaneous £-decay and electron capture processes allow the calculation of the proton RS

fraction y, at a prescribed density 7 [Phys. Rev. D 106 114031 (2022)] Final emarks
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matter in S-equilibrium

Cusp also present at 7,

Reinforces the proposition that
the cusp indicates the start of a
phase transition between
infinite asym matter and
finite sym matter

The crust of NS is iron rich with
7, = 0.46 for *°Fe

We find as n; — 0 then y, = 0.5
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Particle fractions of zpex matter in S-equilibrium

* Global charge neutrality by including background of charged leptons n, =n,+n,

* Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning,
Compact Stars (1997)]:
® Electron capture: p+/ — n+y
* B-decay:n — p+ 1+
* As ny increases then so too does 7, and #, — p, 2 m, = 105.66 MeV
= Energetically favourable for muons to appear
* The simultaneous #-decay and electron capture processes allow the calculation of the proton
fraction 7 ata prescribed density 7z [Phys. Rev. D 106 114031 (2022)]

° Energy of a relativistic Fermi gas at zero temperature (lepton energy)

Py
E(ng) = / KR +m? dk, ke = GB?n)'P, =y
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Particle fractions of zpex matter in S-equilibrium

* Global charge neutrality by including background of charged leptons n, =n,+n, Py
* Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning, Paul Leask
Compact Stars (1997)]: Motivation
® Electron capture: p+/ — n+y Skyrme model
* B-decay:n — p+ 1+ Linking i the
* As ny increases then so too does 7, and #, — p, 2 m, = 105.66 MeV et

= Energetically favourable for muons to appear
* The simultaneous S-decay and electron capture processes allow the calculation of the proton  ESHEES :
fraction 7 ata prescribed density 7z [Phys. Rev. D 106 114031 (2022)] Q;mmmskwmm

° Energy of a relativistic Fermi gas at zero temperature (lepton energy) ey e
Bcell

E =
l(ﬂB) th37Z'2
* Energy per unit cell of S-equilibrated matter
E(ng) = My(ng) + Eig (np) + E,(n5) + E, (1)

Neutron stars

bk,
‘/0‘ ' k2 + mlz dk, /€F = (37772711)1/3, n; = yng Final remarks
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[sospin asymmetric equation of state
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[sospin asymmetric equation of state

E/B (MeV)

1050

1000

950

900

- Mjp
Mp + Eigo(7) + Ec(v) + Eu(y) + MC

* Can obtain the pressure p and
energy density p from the E(n)
curve, with

E =n
J0=7'=§Ecell
_ a_E _ n_l%aEcell
TTW T B

= Isospin asymmetric nuclear matter
EoS phrane = Pbrane (?)

* We will use this EoS to obtain NS
within the Skyrme model
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Coupling to gravity

® In order to describe neutrons stars within the Skyrme framework, we need to couple the
generalized Skyrme model to gravity

* Introduce the Einstein—Hilbert—Skyrme action

1 4
§= méd x\/?gR"_Smatter
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® In order to describe neutrons stars within the Skyrme framework, we need to couple the Paul Leask
generalized Skyrme model to gravity Motivation
* Introduce the Einstein—Hilbert—Skyrme action Skyrme model
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Coupling to gravity

In order to describe neutrons stars within the Skyrme framework, we need to couple the
generalized Skyrme model to gravity

Introduce the Einstein—Hilbert-Skyrme action

1 4
§= m‘éd x\/?gR"_Smatter

S mateer describes matter inside NS

NS Interior well described by perfect fluid of nearly free neutrons & degenerate gas of
electrons: 55
2
uv = ‘/— SI;;E/ET - (ﬁ +p % u, +pg{w
The energy density p and the pressure p are related by the (Brane) crystal EoS
2(P) = Porane(p) [Phys. Lett. B 811 135928 (2020)]
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The Tolman—-Oppenheimer—Volkoff system
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The Tolman—-Oppenheimer—Volkoff system

* Our aim is to calculate A, and R, for a NS described by our system e

* Need to solve the Einstein equations G,, = 87G1,, for some particular choice of g, Paul Leask
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The Tolman—-Oppenheimer—Volkoff system

* Our aim is to calculate A, and R, for a NS described by our system Pl

* Need to solve the Einstein equations G,, = 87G1,, for some particular choice of g, Paul Leask

° Simplest case: static & non-rotating neutron star -

* Spherically symmetric ansatz of the spacetime metric Skyrme model
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The Tolman—-Oppenheimer—Volkoff system

* Our aim is to calculate A, and R, for a NS described by our system Pl
* Need to solve the Einstein equations G, = 87GT, for some particular choice ofgw Paul Leask

Simplest case: static & non-rotating neutron star
Spherically symmetric ansatz of the spacetime metric Skyrme model

ds* = —4(»)d#* + B(r)dr* + #* (d@z +sin” €d¢2) = gwdx‘“dx" Sme o
* Substituting this into the Einstein equations G,, = R, — %Rg}w = 87G1,, yields the TOV o s
system ot
% —4()r (sﬂcg(ﬁp(r) -3 _,f(r))
% =B(r)r (SWGB(V)ﬁ(P(V)) s 120 _rf(r)) e
dp_ p) + pp(r)) da
dr 24(r) dr
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Neutron star properties and the mass-radius curve
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Neutron star properties and the mass-radius curve
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Neutron star properties and the mass-radius curve
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* Mass M obtained from
Schwarzschild metric definition
outside the star
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Neutron star properties and the mass-radius curve
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e Multi-wall crystal MC
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18

* Mass M obtained from
Schwarzschild metric definition
outside the star

1
B(Rys) = [ zic

Rys

* M. = 2.0971.M,, occurring for
a neutron star of radius

= Resulting neutron stars agree well
with recent NICER/LIGO
observational data
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* Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS) -RESEEE
Skyrme model [Phys. Rev. C 83 025206 (2011)] FH
* Attributed to the behavior of the chiral condensates combined with the dilaton condensate St
near saturation », [Mod. Phys. Lett. A 37 2230003 (2022)] o
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* Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS)
Skyrme model [Phys. Rev. C 83 025206 (2011)]

° Attributed to the behavior of the chiral condensates combined with the dilaton condensate
near saturation », [Mod. Phys. Lett. A 37 2230003 (2022)]

* There is a topological phase transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (FCC crystal)
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Final remarks

Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS)
Skyrme model [Phys. Rev. C 83 025206 (2011)]

Attributed to the behavior of the chiral condensates combined with the dilaton condensate
near saturation », [Mod. Phys. Lett. A 37 2230003 (2022)]

There is a topological phase transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (FCC crystal)

Analogous to “pseudo-gap” phenomenon in condensed matter physics
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° However, the compression modulus is still too high, K, ~ 4Kexp HH

* Inhomogeneous solutions are not enough alone \: {“‘

= Inclusion of other d.o.f. such as vector mesons necessary? kyrmioncysals

skyrmion matter
Quantum nion
crystal
symmetry en
Neutron stars

Final remarks

Paul Leask — Neutron stars from skyrmion branes



Open problems

Brane solution improves on compressibility at saturation
* However, the compression modulus is still too high, K, ~ 4K,
* Inhomogeneous solutions are not enough alone

= Inclusion of other d.o.f. such as vector mesons necessary?

° Charged pion condensation normally indicates that the state is superconducting
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Open problems

Brane solution improves on compressibility at saturation
* However, the compression modulus is still too high, K, ~ 4K,
* Inhomogeneous solutions are not enough alone
= Inclusion of other d.o.f. such as vector mesons necessary?
* Charged pion condensation normally indicates that the state is superconducting

= Couple skyrmion matter to electromagnetism: 9,p — D,p = 9,0 — ie4,[Q, ¢]
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Open problems

Brane solution improves on compressibility at saturation

However, the compression modulus is still too high, K, ~ 4K,
Inhomogeneous solutions are not enough alone

= Inclusion of other d.o.f. such as vector mesons necessary?

Charged pion condensation normally indicates that the state is superconducting
= Couple skyrmion matter to electromagnetism: 9,p — D,p = 9,0 — ie4,[Q, ¢]

Estimation of the other SEMF coefficients 4, ag, a,

Paul Leask — Neutron stars from skyrmion branes

s from
skyrmion branes

Paul Leask

Motivation
Skyrme model

Linking in the
Skyrme model

Skyrmion solutions
Skyrmion crystals
and phases of
skyrmion matter
Quantum nion
crystal

symmetry en

Neutron stars

Final remarks




Open problems

Brane solution improves on compressibility at saturation

However, the compression modulus is still too high, K, ~ 4K,
Inhomogeneous solutions are not enough alone

= Inclusion of other d.o.f. such as vector mesons necessary?

Charged pion condensation normally indicates that the state is superconducting
= Couple skyrmion matter to electromagnetism: 9,p — D,p = 9,0 — ie4,[Q, ¢]
Estimation of the other SEMF coefficients 4, ag, a,

What does the cusp in our results mean phenomenologically?

Paul Leask — Neutron stars from skyrmion branes

s from
skyrmion branes

Paul Leask

Motivation
Skyrme model

Linking in the
Skyrme model

Skyrmion solutions
Skyrmion crystals
and phases of
skyrmion matter
Quantum nion
crystal

symmetry en

Neutron stars

Final remarks




	Motivation
	Skyrme model
	Linking in the Skyrme model
	Skyrmion solutions
	Skyrmion crystals and phases of skyrmion matter
	Quantum skyrmion crystals and the symmetry energy
	Neutron stars
	Final remarks

