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Motivation

• Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

• The Skyrme model can be used to model neutron crystals, which exist under high
pressure inside neutron stars [Nucl. Phys. B 262 133–143 (1985)]

• Within the Skyrme framework for various crystals, the neutron stars so far have been
generically crustless

• Neutron stars with crusts previously obtained by interpolating between high density
Skyrme EoS and low density nuclear EoS [Phys. Lett. B 811 135928 (2020)]

• Can we obtain a single EoS that yields neutron stars with crusts?
• Can these neutron stars have sufficient maximal masses?
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Skyrme model

• It was initially believed that descriptions of the low energy regime of QCD must contain
explicit quarks

• Witten showed quarks can be integrated away [Nucl. Phys. B 160 57–115 (1979)]

⇒ Degrees of freedom are hadrons (mesons and baryons)
• In the large𝑁𝑐-limit, QCD can be reduced to an effective field theory of mesons
• Skyrme’s idea [Proc. R. Soc. Lond. A 260 127-138 (1961)]: effective mesonic Lagrangian

involving only pions, with baryons emerging as stable topological solitons
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Skyrme model

• The theory has𝑁𝑓 = 2 flavours of quarks (u,d) that make up the pion fields
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Skyrme model

• The theory has𝑁𝑓 = 2 flavours of quarks (u,d) that make up the pion fields
• These are encoded in the Skyrme field

𝜑 = ( 𝜎 + 𝑖𝜋3 𝑖𝜋1 + 𝜋2
𝑖𝜋1 − 𝜋2 𝜎 − 𝑖𝜋3

) ∈ SU(2)

• This is a map 𝜑 ∶ ℝ3 → SU(2) with the constraint 𝜎2 + 𝜋⃗ ⋅ 𝜋⃗ = 1
• We impose the vacuum B.C. 𝜑(𝑥⃗ → ∞) = 𝕀2
• One-point compactification of space ℝ3 ∪ {∞} ≅ 𝑆3

⇒ Skyrme field is now a map 𝜑 ∶ 𝑆3 → SU(2)
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⇒ Skyrme field is now a map 𝜑 ∶ 𝑆3 → SU(2) ≅ 𝑆3
• Disjoint homotopy classes labelled by 𝐵 ∈ 𝜋3(𝑆

3) = ℤ
⇒ Fields are topologically stable and 𝐵 is identified with the baryon number
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Generalized Skyrme Lagrangian
• Skyrme’s original model:

ℒ24 =
𝐹2𝜋
16ℏ𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) +
ℏ
32𝑒2

𝑔𝜇𝛼𝑔𝜈𝛽Tr ([𝐿𝜇, 𝐿𝜈][𝐿𝛼, 𝐿𝛽])

�

𝐿𝜇 = 𝜑
†𝜕𝜇𝜑 ∈ 𝔰𝔲(2)

• This is (SU(2) × SU(2))/ℤ2 ≅ SO(4) invariant and the pions are massless
• Boundary condition 𝜑(𝑥⃗ → ∞) = 𝕀2 spontaneously breaks chiral SO(4) symmetry to an

isospin SO(3) symmetry, which acts on 𝜋⃗
• Generalized Skyrme model includes a sextic term [Phys. Lett. B 154, 101–106 (1985)], which

is related to the 𝜔-Skyrme model [Phys. Lett. B 137, 251–256 (1984)]:

ℒ0246 = −
𝐹2𝜋𝑚

2
𝜋

8ℏ3
Tr (𝕀2 − 𝜑) +

𝐹2𝜋
16ℏ𝑔

𝜇𝜈Tr(𝐿𝜇𝐿𝜈) +
ℏ
32𝑒2

𝑔𝜇𝛼𝑔𝜈𝛽Tr ([𝐿𝜇, 𝐿𝜈][𝐿𝛼, 𝐿𝛽])

− 𝜋4𝜆2𝑔𝜇𝜈ℬ𝜇ℬ𝜈

• Exhibits short range 𝜔-meson-like repulsion while still describing scalar meson effects
• Baryon d.o.f. not explicitly visible→ topology: Homotopy invariant↔ Baryon number

𝜋3(SU(2)) = ℤ ∋ 𝐵 = ∫
ℝ3
d3𝑥√−𝑔ℬ0, ℬ𝜇 = 1

24𝜋2√−𝑔
𝜖𝜇𝜈𝜌𝜎Tr(𝐿𝜈𝐿𝜌𝐿𝜎)

• Baryons realized as non-perturbative excitations of the pions⇒ solutions of the
Euler–Lagrange field equations - topological solitons (skyrmions)
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ℏ
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�
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𝜋
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• Exhibits short range 𝜔-meson-like repulsion while still describing scalar meson effects
• Baryon d.o.f. not explicitly visible→ topology: Homotopy invariant↔ Baryon number
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Generalized Skyrme model

• We are interested in static solutions and adopt the usual Skyrme units of length 𝐿̃ = 2ℏ/𝑒𝐹𝜋
and energy 𝐸̃ = 𝐹𝜋/4𝑒

• In Skyrme units the energy-momentum tensor is

𝑇𝜇𝜈 = −Tr(𝐿𝜇𝐿𝜈) −
1
4𝑔

𝛼𝛽Tr([𝐿𝜇, 𝐿𝛼][𝐿𝜈, 𝐿𝛽]) + 2𝑐6ℬ𝜇ℬ𝜈 + 𝑔𝜇𝜈ℒ0246

• The adimensional static energy is thus

𝑀𝛣(𝜑, 𝑔) = ∫
ℝ3
d3𝑥√−𝑔 {−12𝑔

𝑖𝑗Tr(𝐿𝑖𝐿𝑗) −
1
16𝑔

𝑖𝑘𝑔𝑗𝑙Tr ([𝐿𝑖, 𝐿𝑗][𝐿𝑘, 𝐿𝑙])

+𝑚2Tr (𝕀2 − 𝜑) + 𝑐6
𝜖𝑖𝑗𝑘𝜖𝑎𝑏𝑐

(24𝜋2√−𝑔)2
Tr(𝐿𝑖𝐿𝑗𝐿𝑘)Tr(𝐿𝑎𝐿𝑏𝐿𝑐)}

• Skyrmions are energy minimizing static solutions of the Euler–Lagrange equations
associated to𝑀𝛣
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Baryon number as the linking number of vortices

• The Skyrme field can be written in terms of two vortices 𝜓1, 𝜓2 ∈ ℂ as

𝜑 = (𝜓1 −𝜓̄2
𝜓2 𝜓̄1

)

• Consider the Hopf map𝐻 ∶ 𝑆3 → 𝑆2 due to the Hopf fibration 𝑆1 ↪ 𝑆3 → 𝑆2

• The map 𝜑 ∶ ℝ3 ∪ {∞} ≅ 𝑆3 → 𝑆3 of degree 𝐵 has Hopf charge 𝑄 = 𝐵 under the Hopf map
𝐻 ∶ 𝑆3 → 𝑆2 [Phys. Rev. D 101, 065011 (2020)]

• Distinct regular points on 𝑆2 under𝐻 ∘ 𝜑 ∶ ℝ3 ∪ {∞} → 𝑆2 have preimages on ℝ3 ∪ {∞} that
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𝐵 = 1 skyrmion [Proc. R. Soc. Lond. A 260 127-138 (1961)]

• The hedgehog field is 𝜑(𝑥⃗) = exp (𝑖𝑓(𝑟)𝑥⃗ ⋅ 𝜏⃗)

• Known as hedgehogs because the pion fields point radially outwards
• Profile function 𝑓(𝑟) must satisfy the B.C.s 𝑓(∞) = 0 and 𝑓(0) = 𝜋
• The hedgehog solution has baryon number 𝐵 = 1 since

𝐵 = − 1
2𝜋2

∫
∞

0

sin2 𝑓
𝑟2

d𝑓
d𝑟 4𝜋𝑟

2𝑑𝑟 = 1𝜋𝑓(0) = 1

• For the hedgehog ansatz, the (massless) static energy is

𝑀1 = 4𝜋∫
∞

0
[𝑟2 (

d𝑓
d𝑟 )

2

+ 2 sin2 𝑓 (1 + (d𝑓d𝑟 )
2

) +
sin4 𝑓
𝑟2

]d𝑟

• E–L equations reduce to a 2nd order non-linear ODE that can only be solved numerically,

(𝑟2 + 2 sin2 𝑓) d
2𝑓
d𝑟2 + 2𝑟

d𝑓
d𝑟 + sin 2𝑓 [(

d𝑓
d𝑟 )

2

− 1 −
sin2 𝑓
𝑟2

] = 0
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𝐵 = 1 skyrmion [Proc. R. Soc. Lond. A 260 127-138 (1961)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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How to construct larger Skyrmions

• Asymptotic interactions of two 𝐵 = 1 skyrmions have preferred orientation (attractive
channel) [Commun. Math. Phys. 245 123–147 (2004)]

• Can place 𝐵 = 1 Skyrmions in the attractive channel on a subcluster of a bravais lattice, most
favourable being a FCC lattice [Phys. Lett. B 208 491–494 (1988)]

• Skyrme fields can be constructed using a rational map approximation (RMA) [Nucl. Phys.
B 510, 507–537 (1998)]

• One could also relate Skyrmions to instantons via the Atiyah–Manton approximation
[Phys. Lett. B 222 438–442 (1989)] or using ADHM data [Nonlinearity 35, 3944–3990 (2022)]

• Quite large skyrmions (up to 𝐵 = 108) have been constructed by gluing 𝛼-particles together
[Proc. R. Soc. A 463 261–279 (2007)] or using a multi-layer RMA based on the Skyrme
crystal [Phys. Rev. D 87 0850834 (2013)]
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Skyrmions from rational maps [Nucl. Phys. B 510, 507–537 (1998)]

• Rational maps are functions from 𝑆2 → 𝑆2, whereas as 𝜑 ∶ ℝ3 → 𝑆3.

• Identify RM target 𝑆2 with spheres of constant latitude on 𝑆3, and RM domain 𝑆2 with
spheres in ℝ3 of radius 𝑟.

• Using polar coords for ℝ3, 𝑧 = tan(𝜃/2) exp(𝑖𝜑), with radius 𝑟, the RM ansatz is

𝜑(𝑟, 𝑧) = exp [ 𝑖𝑓(𝑟)
1 + |𝑅|2

(1 − |𝑅|
2 2𝑅̄

2𝑅 |𝑅|2 − 1)] ,

• 𝑓(𝑟) is a radial profile function with B.C.s 𝑓(0) = 𝜋 and 𝑓(∞) = 0
• 𝑅(𝑧) = 𝑝(𝑧)/𝑞(𝑧) is a rational map of degree 𝐵 = max(deg 𝑝,deg 𝑞).
• Rational maps for 𝐵 = 1, … , 4:

𝐵 𝑅(𝑧) Symmetry
1 𝑧 𝑂(3)
2 𝑧2 𝑂(2) × ℤ
3 𝑧3−√3𝑖𝑧

√3𝑖𝑧2−1
𝑇𝑑

4 𝑧4+2√3𝑖𝑧2+1
𝑧4−2√3𝑖𝑧2+1

𝑂ℎ
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Skyrmions from rational maps [Nucl. Phys. B 510, 507–537 (1998)]

• Substituting the RMA into the massless static energy functional yields

𝑀𝛣 = 4𝜋∫
∞

0
𝑟2 {(

d𝑓
d𝑟 )

2

+ 2𝐵 sin2 𝑓 ((d𝑓d𝑟 )
2

+ 1) + ℐ
sin4 𝑓
𝑟2

}d𝑟,

• ℐ is the purely angular integral to be minimised for choice of rational map 𝑅:

ℐ = 1
4𝜋 ∫( 1 + |𝑧|

2

1 + |𝑅|2
∣d𝑅d𝑧 ∣)

4
2𝑖d𝑧d𝑧̄
(1 + |𝑧|2)2

.

• Optimising ℐ and the profile function 𝑓(𝑟) gives approximate Skyrmions, but further
numerical relaxation is required to find true Skyrmions.
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𝐵 = 2 skyrmion [Phys. Lett. B 195, 235–239 (1987)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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𝐵 = 3 skyrmion [Phys. Lett. B 235, 147–152 (1990)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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𝐵 = 4 skyrmion [Phys. Lett. B 235, 147–152 (1990)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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Skyrmion crystals and phases of skyrmion matter
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Motivation of Skyrme crystals

• Aim: construct an equation of state (EoS) to model neutron stars

⇒ We need to understand phases and phase transitions of nuclear matter
• Ground state of dense nuclear matter has a crystalline structure in the classical

approximation
• In order to determine skyrmion crystals, we first need to define what a crystal really is!
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Skyrmion crystals

• Skyrme crystals are energy minimizing maps

𝜑 ∶ ℝ3/Λ⋄ → SU(2), Λ⋄ = {𝑛1𝑋⃗1 + 𝑛2𝑋⃗2 + 𝑛3𝑋⃗3 ∶ 𝑛𝑖 ∈ ℤ}

• They are critical and stable w.r.t. variations of the lattice Λ about Λ⋄
• Key idea [Comm. Math. Phys. 332 355-377 (2014)]: Identify all 3-tori via diffeomorphism

(with 𝕋3 ≡ ℝ3/ℤ3)

𝐹 ∶ (𝕋3, 𝑔) → (ℝ3/Λ, 𝑑), (𝑥1, 𝑥2, 𝑥3) ↦ 𝑥1𝑋⃗1 + 𝑥
2𝑋⃗2 + 𝑥

3𝑋⃗3

• The metric on 𝕋3 is the pullback 𝑔 = 𝐹∗𝑑 = 𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗, 𝑔𝑖𝑗 = 𝑋⃗𝑖 ⋅ 𝑋⃗𝑗
• Fix Skyrme field to be the map 𝜑 ∶ 𝕋3 → SU(2)
• Vary metric 𝑔𝑠 with 𝑔0 = 𝐹

∗𝑑⟺ vary lattice Λ𝑠 with Λ0 = Λ
• Energy minimized over variations of 𝑔⟺ energy minimizing period lattice Λ⋄
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Summary of [J. Math. Phys. 64 103503 (2023)]

• For fixedℒ024-field 𝜑, there always exists a critical point of𝑀𝛣(𝜑, 𝑔) w.r.t. variations of 𝑔
and it is in fact a unique c.p. (generalizes toℒ0246-model)

• Four crystal solutions were found for unit cells with charge 𝐵cell = 4
• These are the 𝜑FCC, 𝜑𝛼, 𝜑string and 𝜑brane crystals
• The 𝜑FCC-crystal [Phys. Lett. B 208 491–494 (1988)] can be obtained from a Fourier

series-like expansion as an initial configuration [Nucl. Phys. A 501 801–812 (1989)],

𝜎 = −𝑐1𝑐2𝑐3, 𝜋1 = 𝑠1√1 −
𝑠22
2 −

𝑠23
2 +

𝑠22 𝑠
2
3
3 , and cyclic,

where 𝑠𝑖 = sin(2𝜋𝑥𝑖/𝐿) and 𝑐𝑖 = cos(2𝜋𝑥𝑖/𝐿), with initial metric 𝑔 = 𝐿2𝕀3.
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Half-skyrmion (FCC) crystal [Phys. Lett. B 208 491–494 (1988)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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Summary of [J. Math. Phys. 64 103503 (2023)]

• From 𝜑FCC, the other three crystals can be constructed by applying a chiral SO(4)
transformation 𝑄 ∈ SO(4), such that 𝜑 = 𝑄𝜑FCC, and minimizing𝑀𝛣 w.r.t. variations of 𝜑
and 𝑔

• These are

𝑄 ∈ {𝕀4, (
(0, −1, 1, 1)/√3

∗ )
⏟⏟⏟⏟⏟

𝑄𝛼

, ((0, 0, 0, 1)∗ )
⏟

𝑄brane

, ((0, 0, 1, 1)/
√2

∗ )
⏟⏟⏟⏟⏟

𝑄string

} .

• The 𝜑brane-crystal is the lowest energy solution at all baryon densities 𝑛𝛣 = 𝐵cell/𝑉cell
• Δ𝐸 = 𝐸isolated − 𝐸min is minimized for the choice of crystal 𝜑brane
⇒ Should yield a lower compression modulus than previous studies

⇒ Brane crystal is an ideal candidate for dense nuclear matter
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Brane or domain wall crystal [J. Math. Phys. 64 103503 (2023)]

(a) Isosurface plot of the baryon densityℬ0 (b) Linking of two preimages
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Varying the metric on 𝕋3

• Let 𝑔𝑠 be a smooth one-parameter family of metrics on 𝕋3 with 𝑔0 = 𝐹
∗𝑑

• Set 𝛿𝑔 = 𝜕𝑠𝑔𝑠|𝑠=0 ∈ Γ(⊙
2𝑇∗𝕋3) (symmetric 2-covariant tensor field on 𝕋3)

• Inner product on the space of 2-covariant tensor fields ⟨𝐴, 𝐵⟩𝑔 = 𝐴𝑖𝑗𝑔
𝑗𝑘𝐵𝑘𝑙𝑔

𝑙𝑖

• First variation of𝑀𝛣 w.r.t. 𝑔𝑠 is

d𝑀𝛣(𝜑, 𝑔𝑠)
d𝑠 ∣

𝑠=0
= ∫

𝕋3
d3𝑥√𝑔 ⟨𝑆(𝜑, 𝑔), 𝛿𝑔⟩𝑔 , 𝑆(𝜑, 𝑔) ∈ Γ(⊙2𝑇∗𝕋3)

• 𝑆(𝜑, 𝑔) is the stress-energy tensor:

𝑆𝑖𝑗 =
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1
16𝑔
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1
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Numerical minimization of the field and lattice

• Fix 𝜑 ∶ 𝕋3 → SU(2) and think of the energy as a map 𝐸𝜑 ∶ SPD3 → ℝ such that
𝐸𝜑 ∶= 𝑀𝛣(𝜑∣fixed , 𝑔)

• We use arrested Newton flow on SPD3 to minimize 𝐸𝜑 w.r.t. 𝑔
• Explicitly, we are solving the system of 2nd order ODEs

d2

d𝑠2 ∣
𝑠=0

(𝑔𝑖𝑗)𝑠 = −
𝜕𝐸𝜑
𝜕𝑔𝑖𝑗

= −∫
𝕋3
d3𝑥√𝑔 𝑆𝑖𝑗𝜑 , (𝑔𝑖𝑗)0 = 𝑋⃗𝑖 ⋅ 𝑋⃗𝑗

where 𝑆𝜑 ≡ 𝑆(𝜑|fixed, 𝑔) is the fixed field stress tensor

• In conjunction, we minimize𝑀𝛣(𝜑, 𝑔∣fixed) w.r.t. 𝜑 for some initial field 𝜑0
⇒ Laddering of minimizations
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An example: the FCC to half-skyrmion crystal

(a) Initial configuration of four 𝛣 = 1 hedgehogs
arranged in the attractive channel on a cubic grid

(b) Relaxed final solution of the cubic crystal of
half-skyrmions
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Phases of skyrmion matter

• Consider fixed baryon density 𝑛𝛣 variations of𝑀𝛣(𝜑, 𝑔) w.r.t. 𝑔

• vol𝑔 is required to be invariant under variations 𝑔𝑠 of the metric:

d
d𝑠 ∣𝑠=0

∫
𝕋3
d3𝑥√𝑔𝑠 =

1
2 ∫𝕋3

d3𝑥√𝑔𝑔𝑖𝑗𝛿𝑔𝑖𝑗 = 0

⇒ 𝛿𝑔 is trace-free, i.e. Tr𝑔(𝛿𝑔) = 0
• Leads to modifying the (fixed 𝜑 field) stress-energy tensor via the mapping

𝑆𝜑 ↦ 𝑆̃𝜑 = 𝑆𝜑 −
1
3 Tr𝑔(𝑆𝜑) 𝑔

• Convergence criterion becomes max(𝑆̃𝜑) < tol
• This process enables us to determine an energy-density curve
• This is key to obtaining an equation of state within our framework
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Isospin quantization

• Non-renormalizable theory⇒ isospin asymmetry is included by semi-classically quantizing
isospin collective coordinates: 𝜑(𝑥) ↦ 𝜑̂(𝑥, 𝑡) = 𝐴(𝑡)𝜑(𝑥)𝐴†(𝑡) [Nucl. Phys. B 262 133–143
(1985)]

• Can use a mean-field approximation of a large chunk (𝐵 = 𝑁cell𝐵cell) in a generic quantum
state with fixed eigenvalue [Phys. Rev. D 106 114031 (2022)]

𝐼3 =
(𝑍 − 𝑁)
2 = −

(1 − 2𝛾𝑝)
2 𝑁cell𝐵cell, 𝛾𝑝 is the proton fraction

• 𝐼 = 𝐼3 minimizes the isospin energy since by definition 𝐼2 ≥ 𝐼23
• The isospin correction (per unit cell) to the energy of the crystal is found to be
𝐸iso =

ℏ2
8𝑈33
𝐵2cell𝛿

2
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Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿
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• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• In [arXiv:2306.04533 (2023)], at saturation we find

𝑛0 = 0.160 fm
−3, 𝐸𝛮(𝑛0) = 912MeV and 𝑆𝛮(𝑛0) = 22.7MeV

Paul Leask – Neutron stars from skyrmion branes 35/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• In [arXiv:2306.04533 (2023)], at saturation we find

𝑛0 = 0.160 fm
−3, 𝐸𝛮(𝑛0) = 912MeV and 𝑆𝛮(𝑛0) = 22.7MeV

Paul Leask – Neutron stars from skyrmion branes 35/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵

• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• In [arXiv:2306.04533 (2023)], at saturation we find

𝑛0 = 0.160 fm
−3, 𝐸𝛮(𝑛0) = 912MeV and 𝑆𝛮(𝑛0) = 22.7MeV

Paul Leask – Neutron stars from skyrmion branes 35/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• In [arXiv:2306.04533 (2023)], at saturation we find

𝑛0 = 0.160 fm
−3, 𝐸𝛮(𝑛0) = 912MeV and 𝑆𝛮(𝑛0) = 22.7MeV

Paul Leask – Neutron stars from skyrmion branes 35/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• The asymmetry of matter is determined by the isospin asymmetry parameter
𝛿 = (𝑁 − 𝑍)/(𝑁 + 𝑍) = 1 − 2𝛾𝑝

• Binding energy per baryon number of asymmetric nuclear matter is given by

𝐸
𝐵(𝑛𝛣, 𝛿) = 𝐸𝛮(𝑛𝛣) + 𝑆𝛮(𝑛𝛣)𝛿

2 +O(𝛿3),
𝑛0 = 0.160 fm

−3

𝐸𝛮(𝑛0) = 923MeV
𝑆𝛮(𝑛0) ≈ 30MeV

• The isospin symmetric binding energy is defined by 𝐸𝛮 = 𝑀𝛣/𝐵
• The symmetry energy 𝑆𝛮 dictates how the binding energy changes going from symmetric
(𝛿 = 0) to asymmetric (𝛿 ≠ 0) nuclear matter

• It is obtained from the quantum isospin energy 𝑆𝛮(𝑛𝛣) =
𝛦iso
𝛣cell𝛿2

= ℏ2
8𝑈33
𝑉cell𝑛𝛣

• In [arXiv:2306.04533 (2023)], at saturation we find

𝑛0 = 0.160 fm
−3, 𝐸𝛮(𝑛0) = 912MeV and 𝑆𝛮(𝑛0) = 22.7MeV

Paul Leask – Neutron stars from skyrmion branes 35/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Symmetry energy
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Symmetry energy and the cusp structure
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• Cusp below saturation at
𝑛∗ ∼ 3𝑛0/4

• Symmetry energy at zero density
𝑆𝛮(0) = 23.77MeV (finite
symmetric nucl. mat.)

• Bethe–Weizsäcker SEMF
asymmetry energy 𝐸A = 𝑎𝛢𝛿

2𝐵
• Can identify
𝑆𝛮(0) ∼ 𝑎𝛢 = 23.7MeV

• Cusp origin: phase transition
between infinite isospin
asymmetric nuclear matter
and somewhat isolated finite
nuclear matter
[arXiv:2306.04533 (2023)]
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Particle fractions of 𝑛𝑝𝑒𝜇 matter in 𝛽-equilibrium

• Global charge neutrality by including background of charged leptons 𝑛𝑝 = 𝑛𝑒 + 𝑛𝜇

• Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning,
Compact Stars (1997)]:
• Electron capture: 𝑝 + 𝑙 → 𝑛 + 𝜈𝑙
• 𝛽-decay: 𝑛 → 𝑝 + 𝑙 + 𝜈̄𝑙

• As 𝑛𝛣 increases then so too does 𝑛𝑝 and 𝑛𝑒→ 𝜇𝑒 ≥ 𝑚𝜇 = 105.66MeV
⇒ Energetically favourable for muons to appear
• The simultaneous 𝛽-decay and electron capture processes allow the calculation of the proton

fraction 𝛾𝑝 at a prescribed density 𝑛𝛣 [Phys. Rev. D 106 114031 (2022)]
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Particle fractions of 𝑛𝑝𝑒𝜇 matter in 𝛽-equilibrium

0 0.5 1 1.5 2 2.5 3
10-3

10-2

10-1

100

Proton
Neutron
Muon
Electron
DU Threshold

• Cusp also present at 𝑛∗

• Reinforces the proposition that
the cusp indicates the start of a
phase transition between
infinite asym matter and
finite sym matter

• The crust of NS is iron rich with
𝛾𝑝 = 0.46 for 56Fe

• We find as 𝑛𝛣 → 0 then 𝛾𝑝 = 0.5

⇒ These correspond quite well
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Particle fractions of 𝑛𝑝𝑒𝜇 matter in 𝛽-equilibrium

• Global charge neutrality by including background of charged leptons 𝑛𝑝 = 𝑛𝑒 + 𝑛𝜇
• Lepton-nucleon exchange described by simultaneous processes [N. K. Glendenning,
Compact Stars (1997)]:
• Electron capture: 𝑝 + 𝑙 → 𝑛 + 𝜈𝑙
• 𝛽-decay: 𝑛 → 𝑝 + 𝑙 + 𝜈̄𝑙

• As 𝑛𝛣 increases then so too does 𝑛𝑝 and 𝑛𝑒→ 𝜇𝑒 ≥ 𝑚𝜇 = 105.66MeV
⇒ Energetically favourable for muons to appear
• The simultaneous 𝛽-decay and electron capture processes allow the calculation of the proton

fraction 𝛾𝑝 at a prescribed density 𝑛𝛣 [Phys. Rev. D 106 114031 (2022)]
• Energy of a relativistic Fermi gas at zero temperature (lepton energy)

𝐸𝑙(𝑛𝛣) =
𝐵cell
𝑛𝛣ℏ3𝜋2

∫
ℏ𝑘𝐹

0
𝑘2√𝑘2 + 𝑚2𝑙 d𝑘, 𝑘𝐹 = (3𝜋

2𝑛𝑙)
1/3, 𝑛𝑙 = 𝛾𝑙𝑛𝛣

• Energy per unit cell of 𝛽-equilibrated matter

𝐸cell(𝑛𝛣) = 𝑀𝛣(𝑛𝛣) + 𝐸iso(𝑛𝛣) + 𝐸𝑒(𝑛𝛣) + 𝐸𝜇(𝑛𝛣)
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𝐵cell
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∫
ℏ𝑘𝐹

0
𝑘2√𝑘2 + 𝑚2𝑙 d𝑘, 𝑘𝐹 = (3𝜋

2𝑛𝑙)
1/3, 𝑛𝑙 = 𝛾𝑙𝑛𝛣
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Isospin asymmetric equation of state
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• Can obtain the pressure 𝑝 and
energy density 𝜌 from the 𝐸(𝑛𝛣)
curve, with

𝜌 = 𝐸𝑉 =
𝑛𝛣
𝐵 𝐸cell

𝑝 = − 𝜕𝐸𝜕𝑉 =
𝑛2𝛣
𝐵
𝜕𝐸cell
𝜕𝑛𝛣

⇒ Isospin asymmetric nuclear matter
EoS 𝜌brane = 𝜌brane(𝑝)

• We will use this EoS to obtain NS
within the Skyrme model
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Coupling to gravity

• In order to describe neutrons stars within the Skyrme framework, we need to couple the
generalized Skyrme model to gravity

• Introduce the Einstein–Hilbert–Skyrme action

𝑆 = 1
16𝜋𝐺 ∫Σ

d4𝑥√−𝑔𝑅 + 𝑆matter

• 𝑆matter describes matter inside NS
• NS Interior well described by perfect fluid of nearly free neutrons & degenerate gas of

electrons:

𝑇𝜇𝜈 = −
2
√−𝑔

𝛿𝑆matter
𝛿𝑔𝜇𝜈 = (𝜌(𝑝) + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈

• The energy density 𝜌 and the pressure 𝑝 are related by the (Brane) crystal EoS
𝜌(𝑝) = 𝜌brane(𝑝) [Phys. Lett. B 811 135928 (2020)]
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The Tolman–Oppenheimer–Volkoff system

• Our aim is to calculate𝑀max and 𝑅max for a NS described by our system

• Need to solve the Einstein equations 𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 for some particular choice of 𝑔𝜇𝜈
• Simplest case: static & non-rotating neutron star
• Spherically symmetric ansatz of the spacetime metric

d𝑠2 = −𝐴(𝑟)d𝑡2 + 𝐵(𝑟)d𝑟2 + 𝑟2 (d𝜃2 + sin2 𝜃d𝜙2) = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

• Substituting this into the Einstein equations 𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2𝑅𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 yields the TOV

system

d𝐴
d𝑟 =𝐴(𝑟)𝑟 (8𝜋𝐺𝐵(𝑟)𝑝(𝑟) −

1 − 𝐵(𝑟)
𝑟2

)

d𝐵
d𝑟 =𝐵(𝑟)𝑟 (8𝜋𝐺𝐵(𝑟)𝜌(𝑝(𝑟)) +

1 − 𝐵(𝑟)
𝑟2

)

d𝑝
d𝑟 = −

𝑝(𝑟) + 𝜌(𝑝(𝑟))
2𝐴(𝑟)

d𝐴
d𝑟
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Neutron star properties and the mass-radius curve
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0
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3.5

• Mass𝑀 obtained from
Schwarzschild metric definition
outside the star

𝐵(𝑅NS) =
1

1 − 2𝛭𝐺
𝑅NS

• 𝑀max = 2.0971𝑀⊙, occurring for
a neutron star of radius
𝑅NS = 13.12 km.

⇒ Resulting neutron stars agree well
with recent NICER/LIGO
observational data
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𝑅NS = 13.12 km.

⇒ Resulting neutron stars agree well
with recent NICER/LIGO
observational data

Paul Leask – Neutron stars from skyrmion branes 44/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Neutron star properties and the mass-radius curve

8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

• Mass𝑀 obtained from
Schwarzschild metric definition
outside the star

𝐵(𝑅NS) =
1

1 − 2𝛭𝐺
𝑅NS

• 𝑀max = 2.0971𝑀⊙, occurring for
a neutron star of radius
𝑅NS = 13.12 km.

⇒ Resulting neutron stars agree well
with recent NICER/LIGO
observational data

Paul Leask – Neutron stars from skyrmion branes 44/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Final remarks

Paul Leask – Neutron stars from skyrmion branes 45/47



Neutron stars from
skyrmion branes

Paul Leask

Motivation

Skyrme model

Linking in the
Skyrme model

Skyrmion solutions

Skyrmion crystals
and phases of
skyrmion matter

Quantum skyrmion
crystals and the
symmetry energy

Neutron stars

Final remarks

Final remarks

• Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS)
Skyrme model [Phys. Rev. C 83 025206 (2011)]

• Attributed to the behavior of the chiral condensates combined with the dilaton condensate
near saturation 𝑛0 [Mod. Phys. Lett. A 37 2230003 (2022)]

• There is a topological phase transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (FCC crystal)

• Analogous to “pseudo-gap” phenomenon in condensed matter physics
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Open problems

• Brane solution improves on compressibility at saturation

• However, the compression modulus is still too high, 𝐾0 ∼ 4𝐾exp
• Inhomogeneous solutions are not enough alone

⇒ Inclusion of other d.o.f. such as vector mesons necessary?
• Charged pion condensation normally indicates that the state is superconducting
⇒ Couple skyrmion matter to electromagnetism: 𝜕𝜇𝜑 ↦ 𝐷𝜇𝜑 = 𝜕𝜇𝜑 − 𝑖𝑒𝐴𝜇[𝑄, 𝜑]
• Estimation of the other SEMF coefficients 𝑎𝑉, 𝑎𝑆, 𝑎𝐶
• What does the cusp in our results mean phenomenologically?
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