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• Skyrme crystals and phases of skyrmion matter [Harland, Leask & Speight (2023) -
arXiv:2305.14005]

• Applications of skyrmion crystals to dense nuclear matter [Leask, Huidobro &
Wereszczynski (2023) - arXiv:2306.04533]
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Motivation

• Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

• Neutron stars within the Skyrme framework for the 1/2-crystal and α-crystal are
generically crustless

• BPS neutron stars have maximal masses too large ∼ 3− 4M� [Adam et al. (2015)]
• NS with crust previously obtained by interpolating between high density Skyrme

EoS and low density nuclear EoS [Adam at al. (2020)]
• Can we obtain a single EoS that yields neutron stars with crusts?
• Can these neutron stars have sufficient maximal masses?
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Generalized Skyrme model
• Effective Lagrangian of mesonic fields: ϕ : R × M → SU(Nf ), Nf = 2 (u,d-quarks)

• Generalized Skyrme model:

L0246 = − F2
πm2

π

8h̄3 Tr (Id − ϕ) +
F2
π

16h̄
gµν Tr(LµLν) +

h̄
32e2

gµαgνβ Tr ([Lµ,Lν ][Lα,Lβ ])

− π4λ2gµνBµBν

• Lightest mesons (pions) are the encoded in the Skyrme field ϕ =

(
π0 π+

π− π̄0

)
∈ SU(2)

• Exhibits short range ω-meson-like repulsion while still describing scalar meson effects
• Baryon d.o.f. not explicitly visible → topology: Homotopy invariant ↔ Baryon number

H3(M ) = Z 3 B =

∫
M

d3x
√
−g B0, Bµ =

1

24π2
√
−g

εµνρσ Tr(LνLρLσ)

• Baryons realized as non-perturbative excitations of the pions ⇒ solutions of the
Euler–Lagrange field equations - topological solitons (skyrmions)
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Generalized Skyrme model

• We are interested in static solutions and adopt the usual Skyrme units of length
L̃ = 2h̄/eFπ and energy Ẽ = Fπ/4e

• In Skyrme units the energy-momentum tensor is

Tµν = − Tr(LµLν)−
1

4
gαβ Tr([Lµ,Lα][Lν ,Lβ ]) + 2c6BµBν + gµνL0246

• The adimensional static energy is thus

MB(ϕ, g) =
∫

M
d3x

√
−g
{
−1

2
gij Tr(LiLj)−

1

16
gikgjl Tr ([Li,Lj][Lk,Ll])

+m2 Tr (I2 − ϕ) + c6
εijkεabc

(24π2
√
−g)2

Tr(LiLjLk)Tr(LaLbLc)

}
• We use the values

Fπ = 122MeV, e = 4.54, mπ = 140MeV, λ2 = 1MeV fm3
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gikgjl Tr ([Li,Lj][Lk,Ll])

+m2 Tr (I2 − ϕ) + c6
εijkεabc

(24π2
√
−g)2

Tr(LiLjLk)Tr(LaLbLc)

}
• We use the values

Fπ = 122MeV, e = 4.54, mπ = 140MeV, λ2 = 1MeV fm3

Paul Leask – Isospin asymmetric nuclear matter in the Skyrme model 9/41



Isospin
asymmetric

nuclear matter in
the Skyrme

model

Paul Leask

Outline of talk

Motivation

Skyrme crystals
and phases of
skyrmion matter

Quantum
skyrmion crystals
and the
symmetry energy

Neutron stars

Towards the
semi-empirical
mass formula
(SEMF)

Final remarks

Generalized Skyrme model

• We are interested in static solutions and adopt the usual Skyrme units of length
L̃ = 2h̄/eFπ and energy Ẽ = Fπ/4e
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Motivation of Skyrme crystals

• We need to understand phases and phase transitions of nuclear matter

• Ground state of dense nuclear matter has a crystalline structure in the classical
approximation

• In order to determine skyrmion crystals, we first need some numerical machinery!
• We will employ the usual vector (or σ-model) formulation and introduce the metric

independent integral formulation (MIIF)
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Metric independent integral formulation

• We essentially want to do two gradient flows: one for ϕ and one for g

• g is position independent ⇒ the static energy can be written as

MB(ϕ, g) =
√ggijLij(ϕ) +

√ggikgjlΩijkl(ϕ) +
√gW (ϕ) +

C(ϕ)
√g

• In the vector formulation, the MII’s are

W (ϕ) = 2m2

∫
T3

d3x (1− ϕ0)

Lij(ϕ) =

∫
T3

d3x (∂iϕ
µ∂jϕ

µ)

Ωijkl(ϕ) =
1

2

∫
T3

d3x {(∂iϕ
µ∂kϕ

µ) (∂jϕ
ν∂lϕ

ν)− (∂iϕ
µ∂lϕ

µ) (∂jϕ
ν∂kϕ

ν)}

C(ϕ) =
c6

(12π2)2

∫
T3

d3x
(
εijkεµνρσϕ

µ∂iϕ
ν∂jϕ

ρ∂kϕ
σ
) (

εlmnεαβγδϕ
α∂lϕ

β∂mϕγ∂nϕ
δ
)
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Skyrmion crystals

• Skyrme crystals are energy minimizing maps

ϕ : R3/Λ� → SU(2), Λ� = {n1X1 + n2X2 + n3X3 : ni ∈ Z}

• They are critical and stable w.r.t. variations of the lattice Λ about Λ�

• Key idea [Speight (2014)]: Identify all 3-tori via diffeomorphism (with T3 ≡ R3/Z3)

F : (T3, g) → (R3/Λ, gEuc), F(x) =

 ↑ ↑ ↑
X1 X2 X3

↓ ↓ ↓

x

• The metric on T3 is the pullback g = F∗gEuc with gij = Xi · Xj

• Fix Skyrme field to be the map ϕ : T3 → SU(2)

• Vary metric gs with g0 = F∗gEuc ⇐⇒ vary lattice Λs with Λ0 = Λ

• Energy minimized over all variations of g ⇐⇒ optimal period lattice Λ�
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Final remarks

Summary of [Harland, Leask & Speight (2023)]

• For fixed L024-field ϕ, there always exists a critical point of MB(ϕ, g) w.r.t. variations
of g and it is in fact a unique c.p. (generalizes to L0246-model)

• Four crystal solutions were found for unit cells with charge Bcell = 4

• These are the ϕ1/2, ϕα, ϕchain and ϕsheet crystals
• The ϕ1/2-crystal [Kugler & Shtrikmann (1988)] can be obtained from a Fourier

series-like expansion as an initial configuration [Castillejo et al. (1989)],

ϕ0 = −c1c2c3, ϕ1 = s1

√
1− s22

2
− s23

2
+

s22s23
3

, and cyclic,

where si = sin(2πxi/L) and ci = cos(2πxi/L), with initial metric g = L3I3.
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• From ϕ1/2, the other three crystals can be constructed by applying a chiral SO(4)
transformation Q ∈ SO(4), such that ϕ = Qϕ1/2, and minimizing MB w.r.t.
variations of ϕ and g

• These are

Q ∈

I4,

(
(0,−1, 1, 1)/

√
3

∗

)
︸ ︷︷ ︸

Qα

,

(
(0, 0, 0, 1)

∗

)
︸ ︷︷ ︸

Qsheet

,

(
(0, 0, 1, 1)/

√
2

∗

)
︸ ︷︷ ︸

Qchain

 .

• The ϕsheet-crystal is the lowest energy solution at all baryon densities nB = Bcell/Vcell

• ∆E = Eisolated − Emin is minimized for the choice of crystal ϕsheet

⇒ Should yield a lower compression modulus than previous studies
⇒ Multi-wall crystal is an ideal candidate for dense nuclear matter
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Varying the metric on T3

• Let gs be a smooth one-parameter family of metrics on T3 with g0 = F∗gEuc

• Set δg = ∂sgs|s=0 ∈ Γ(�2T∗T3) (symmetric 2-covariant tensor field on T3)
• Inner product on the space of 2-covariant tensor fields 〈A,B〉g = AijgjkBklgli

• First variation of MB w.r.t. gs is

dMB(ϕ, gs)

ds

∣∣∣∣
s=0

=

∫
T3

d3x√g 〈S(ϕ, g), δg〉g , S(ϕ, g) ∈ Γ(�2T∗T3)

• S(ϕ, g) is the stress-energy tensor:

Sij =
1

2

[
m2 Tr(Id−ϕ)− 1

2
gkl Tr(LkLl)−

1

16
gkmgln Tr(ΩklΩmn)− c6(B0)

2

]
gij

+
1

2
Tr(LiLj) +

1

8
gkl Tr(ΩikΩjl).

• This is related to the static spatial part of Tµν : Sij =
1√g

δ(
√gL0246)

δgij = − 1
2 Tij
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Extended virial constraints

• Space of allowed variations E =
{
δgijdxidxj ∈ Γ(�2T∗T3) : δgij const., δgji = δgij

}

• Criticality condition dMB(ϕ,gs)
ds

∣∣∣
s=0

= 0 ⇔ S ⊥L2 E

• Orthogonal compliment of g in E is the space of traceless parallel symmetric bilinear
forms, given by

E0 =
{
θ ∈ Γ(�2T∗T3) : Trg(θ) = 〈θ, g〉g = 0

}
.

• Criticality condition S ⊥L2 E can be reformulated as∫
T3

d3x√g 〈S(ϕ, g), g〉g = 0 and S ⊥L2 E0.

• First condition S ⊥L2 g is analogous to the Derrick scaling argument
• Second condition S ⊥L2 E0 coincides with the extended virial constraints derived by

[Manton (2009)]
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• First condition S ⊥L2 g is analogous to the Derrick scaling argument
• Second condition S ⊥L2 E0 coincides with the extended virial constraints derived by

[Manton (2009)]
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• The Derrick scaling argument is∫
T3

d3x√g 〈S(ϕ, g), g〉g =

∫
T3

d3x√g Trg(S) =
1

2
(E2 − E4 + 3E0 − 3E6) = 0

• The Derrick scaling argument is∫
T3

d3x√g 〈S(ϕ, g), g〉g =

∫
T3

d3x√g Trg(S) =
1

2
(E2 − E4 + 3E0 − 3E6) = 0

• To determine the e.v.c corresponding to S ⊥L2 E0, we define a symmetric bilinear form

∆ij =
√g Lij(ϕ) + 2

√g gklΩikjl(ϕ) =
1

3
(E2 + 2E4) gij

• This is the trace-free part of the stress-energy tensor S
• S ⊥L2 E0 iff ∆ ⊥ E0 w.r.t. the inner product 〈·, ·〉E ⇒ ∆ = λg for λ ∈ R
• Taking the trace of both sides yields the e.v.c.

3λ =
√g gijLij(ϕ) + 2

√g gijgklΩikjl(ϕ) = E2 + 2E4 ⇒ ∆ =
1

3
(E2 + 2E4) g

• For a solution to be a skyrmion crystal it has to satisfy these extended virial constraints
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Numerical minimization of the field and lattice

• Fix ϕ : T3 → SU(2) and think of the energy as a map Eϕ : SPD3 → R such that
Eϕ := MB(ϕ|fixed , g)

• We use arrested Newton flow on SPD3 to minimize Eϕ w.r.t. g
• Explicitly, we are solving the system of 2nd order ODEs

d2

ds2

∣∣∣∣
s=0

(gij)s = −∂Eϕ

∂gij
= −

∫
T3

d3x√g S ij
ϕ , (gij)0 = Xi · Xj

• In terms of the MIIF,∫
T3

d3x√g S ij
ϕ =

1

2
gij
(
√g W − C

√g

)
+
√g
(
1

2
gmngij − gimgjn

)
Lmn

+
√g
(
1

2
gijgln − 2gilgjn

)
gkmΩklmn

• In conjunction, we minimize MB(ϕ, g|fixed) w.r.t. ϕ for some initial field ϕ0

⇒ Laddering of minimizations as mentioned in Martin’s talk
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An example: the α-particle

(a) Initial configuration of a B = 4 RMA in a
non-cubic lattice Λ

(b) Relaxed final solution of the cubic α-particle
crystal
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Phases of skyrmion matter

• Consider fixed baryon density nB variations of MB(ϕ, g) w.r.t. g

• volg is required to be invariant under variations gs of the metric:

d
ds

∣∣∣∣
s=0

∫
T3

d3x√gs =
1

2

∫
T3

d3x√ggijδgij = 0

⇒ δg is trace-free, i.e. δg ∈ E0

• Leads to modifying the (fixed field) stress-energy tensor via the mapping

Sϕ 7→ S̃ϕ = Sϕ − 1

3
Trg(Sϕ) g

• Convergence criterion becomes max(S̃ϕ) < tol
• This process enables us to determine an energy-density curve
• This is key to obtaining an equation of state within our framework
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Quantum skyrmion crystals and the symmetry energy
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Isospin quantization
• Skyrme model is non-renormalizable ⇒ semi-classical quantization:
ϕ(x) 7→ ϕ̂(x, t) = A(t)ϕ(x)A†(t) [Klebanov (1985)]

• Corresponding isorotational angular velocity ωj = −i Tr(τ jA†Ȧ)
• Maurer–Cartan left current transforms as

L̂µ = ϕ̂†∂µϕ̂ =

{
AωiTiA†, µ = 0

ALiA†, µ = i = 1, 2, 3
Ti =

i
2
ϕ†[τ i, ϕ] ∈ su(2)

• Usual approximation: the wave function Ψ ∈ H is non-vanishing only on minimal
energy configurations and their symmetry orbits (rigid body quantization)

• Effective Lagrangian restricted to isospin orbit of skyrmion: Lrot =
1
2ωiUijωj

• The isospin inertia tensor is a left invariant metric on SO(3),

Uij = −
∫

T3

d3x√g
{

Tr(TiTj) +
1

4
gkl Tr([Lk,Ti][Ll,Tj])

− c6
2(4π2√g)2

gklε
kmnεlab Tr(TiLmLn)Tr(TjLaLb)

}
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Isospin quantization

• Angular momentum operator canonically conjugate to ω, Ki = ∂Lrot/∂ωi = Uijωj

• Body-fixed K → space-fixed I : Ii = −D(A)ijKj,
(
D(A)ij =

1
2 Tr(τ iAτ jA†)

)
• Canonical quantization: classical momenta (K , I ) → quantum operators (K̂, Î)
• Quantum Hamiltonian H = h̄2

2 K̂U−1K̂T + MB

• To determine bound states with definite energy we must solve the corresponding
Schrödinger equation, H |Ψ〉 = E |Ψ〉

• Now consider a rigidly iso-spinning crystal with Ncell unit cells and baryon number
B = NcellBcell = N + Z

⇒ H |Ψ〉 = (NcellMB + EI,I3) |Ψ〉, where I , I3 are quantum numbers
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Isospin quantization

• Angular momentum operator canonically conjugate to ω, Ki = ∂Lrot/∂ωi = Uijωj

• Body-fixed K → space-fixed I : Ii = −D(A)ijKj,
(
D(A)ij =

1
2 Tr(τ iAτ jA†)

)

• Canonical quantization: classical momenta (K , I ) → quantum operators (K̂, Î)
• Quantum Hamiltonian H = h̄2

2 K̂U−1K̂T + MB

• To determine bound states with definite energy we must solve the corresponding
Schrödinger equation, H |Ψ〉 = E |Ψ〉

• Now consider a rigidly iso-spinning crystal with Ncell unit cells and baryon number
B = NcellBcell = N + Z

⇒ H |Ψ〉 = (NcellMB + EI,I3) |Ψ〉, where I , I3 are quantum numbers
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Isospin quantization
• Calculating the isospin correction to the energy of the crystal requires knowledge of

the quantum state of the whole crystal

• The crystal is infinitely extended with infinite baryon number ⇒ extremely difficult
computation!

• The following restrictions are imposed [Adam et al. (2022)]:

• |Ψ〉 = ⊗Ncell |ψ〉, where Ncell → ∞ in the thermodynamic limit.
• The symmetry of the classical configuration in each unit cell is extended to the whole

crystal, so both wavefunctions share the same point symmetry group

• Mean-field approximation of a large chunk in a generic quantum state with fixed
eigenvalue

I3 =
(Z − N )

2
= − (1− 2γp)

2
NcellBcell, γp is the proton fraction

• I = I3 minimizes the isospin energy since by definition I 2 ≥ I 2
3

• The isospin correction to the energy of the crystal is found to be

EI,I3 =
h̄2I (I + 1)

NcellU11
+

h̄2I 2
3

2

(
1

U33
− 2

U11

)
−→

Ncell→∞
Eiso =

EI,I3
Ncell

=
h̄2

8U33
B2

cellδ
2
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Symmetry energy

• The asymmetry of matter is determined by the isospin asymmetry parameter
δ = (N − Z)/(N + Z) = 1− 2γp

• Binding energy per baryon number of asymmetric nuclear matter is given by

E
B
(nB, δ) = EN(nB) + SN(nB)δ

2 + O(δ3),
n0 = 0.160 fm−3

EN(n0) = 923MeV
SN(n0) ≈ 30MeV

• The isospin symmetric binding energy is defined by EN = MB/B
• The symmetry energy SN dictates how the binding energy changes going from

symmetric (δ = 0) to asymmetric (δ 6= 0) nuclear matter
• It is obtained from the quantum isospin energy

SN(nB) =
Eiso

Bcellδ2
=

h̄2

8U33
VcellnB

• The asymmetry of matter is determined by the isospin asymmetry parameter
δ = (N − Z)/(N + Z) = 1− 2γp

• Binding energy per baryon number of asymmetric nuclear matter is given by

E
B
(nB, δ) = EN(nB) + SN(nB)δ

2 + O(δ3),
n0 = 0.160 fm−3

EN(n0) = 923MeV
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• The isospin symmetric binding energy is defined by EN = MB/B
• The symmetry energy SN dictates how the binding energy changes going from

symmetric (δ = 0) to asymmetric (δ 6= 0) nuclear matter
• It is obtained from the quantum isospin energy

SN(nB) =
Eiso

Bcellδ2
=

h̄2

8U33
VcellnB

• At saturation we find n0 = 0.160 fm−3, EN(n0) = 912MeV and SN(n0) = 22.7MeV
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symmetric (δ = 0) to asymmetric (δ 6= 0) nuclear matter
• It is obtained from the quantum isospin energy

SN(nB) =
Eiso

Bcellδ2
=

h̄2

8U33
VcellnB

• At saturation we find n0 = 0.160 fm−3, EN(n0) = 912MeV and SN(n0) = 22.7MeV
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Symmetry energy and the cusp structure
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• Cusp below saturation at
n∗ ∼ 3n0/4

• Symmetry energy at zero
density SN(0) = 23.77MeV
(finite symmetric nucl. mat.)

• Bethe–Weizsäcker SEMF
asymmetry energy EA = aAδ

2B
• Can identify

SN(0) ∼ aA = 23.7MeV
• Cusp origin: phase transition

between infinite isospin
asymmetric nuclear matter
and somewhat isolated finite
nuclear matter [P.L., M.H. &
A.W. (2023)]
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Particle fractions of npeµ matter in β-equilibrium

• Global charge neutrality by including background of charged leptons np = ne + nµ

• Lepton-nucleon exchange described by simultaneous processes [Glendenning (2000)]:
• Electron capture: p + l → n + νl
• β-decay: n → p + l + ν̄l

• As nB increases then so too does np and ne → µe ≥ mµ = 105.66MeV
⇒ Energetically favourable for muons to appear
• The simultaneous β-decay and electron capture processes allow the calculation of the

proton fraction γp at a prescribed density nB [Adam et al. (2022)]
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Particle fractions of npeµ matter in β-equilibrium
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• Cusp also present at n∗

• Reinforces the proposition that
the cusp indicates the start of a
phase transition between
infinite asym matter and
finite sym matter

• The crust of NS is iron rich with
γp = 0.46 for 56Fe

• We find as nB → 0 then
γp = 0.5

⇒ These correspond quite well
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Particle fractions of npeµ matter in β-equilibrium

• Global charge neutrality by including background of charged leptons np = ne + nµ

• Lepton-nucleon exchange described by simultaneous processes [Glendenning (2000)]:
• Electron capture: p + l → n + νl
• β-decay: n → p + l + ν̄l

• As nB increases then so too does np and ne → µe ≥ mµ = 105.66MeV
⇒ Energetically favourable for muons to appear
• The simultaneous β-decay and electron capture processes allow the calculation of the

proton fraction γp at a prescribed density nB [Adam et al. (2022)]
• Energy of a relativistic Fermi gas at zero temperature (lepton energy)

El(nB) =
Bcell

nBh̄3π2

∫ h̄kF

0

k2
√

k2 + m2
l dk, kF = (3π2nl)

1/3, nl = γlnB

• Energy per unit cell of β-equilibrated matter

Ecell(nB) = MB(nB) + Eiso(nB) + Ee(nB) + Eµ(nB)
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Isospin asymmetric equation of state
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• Can obtain the pressure p and
energy density ρ from the
E(nB) curve, with

ρ =
E
V

=
nB

B
Ecell

p = − ∂E
∂V

=
n2

B
B

∂Ecell

∂nB

⇒ Isospin asymmetric nuclear
matter EoS ρMW = ρMW(p)

• We will use this EoS to obtain
NS within the Skyrme model
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Coupling to gravity

• In order to describe neutrons stars within the Skyrme framework, we need to couple
the generalized Skyrme model to gravity

• Introduce the Einstein–Hilbert–Skyrme action

S =
1

16πG

∫
Σ

d4x
√
−gR + Smatter

• Smatter describes matter inside NS
• NS Interior well described by perfect fluid of nearly free neutrons & degenerate gas of

electrons:
Tµν = − 2√

−g
δSmatter

δgµν
= (ρ(p) + p)uµuν + pgµν

• The energy density ρ and the pressure p are related by the (multi-wall) crystal EoS
ρ(p) = ρMW(p) [Adam et al. (2020)]
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The Tolman–Oppenheimer–Volkoff system

• Our aim is to calculate Mmax and Rmax for a NS described by our system

• Need to solve the Einstein equations Gµν = 8πGTµν for some particular choice of gµν
• Simplest case: static & non-rotating neutron star
• Spherically symmetric ansatz of the spacetime metric [Adam et al. (2015)]

ds2 = −A(r)dt2 + B(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
= gµνdxµdxν

• Substituting this into the Einstein equations Gµν = Rµν − 1
2Rgµν = 8πGTµν yields

the TOV system
dA
dr

=A(r)r
(
8πGB(r)p(r)− 1− B(r)

r2

)
dB
dr

=B(r)r
(
8πGB(r)ρ(p(r)) + 1− B(r)

r2

)
dp
dr

= − p(r) + ρ(p(r))
2A(r)

dA
dr
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Neutron star properties and the mass-radius curve

8 10 12 14 16 18
0
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2.5
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3.5

• Mass M obtained from
Schwarzschild metric definition
outside the star

B(RNS) =
1

1− 2MG
RNS

• Mmax = 2.0971M�, occurring
for a neutron star of radius
RNS = 13.12 km.

⇒ Resulting neutron stars agree
well with recent NICER/LIGO
observational data
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α-particle approximation (APA)

• Bethe–Weizsäcker SEMF:

Eb = aV B − aSB2/3 − aC
Z(Z − 1)

B1/3
− aAδ

2B + δ(N ,Z)

• aV = 15.8MeV, aS = 18MeV, aC = 0.625MeV, aA = 23.7MeV
• Method: Approach the SEMF using APA with n3 α-particles
• Bethe–Weizsäcker SEMF:

Eb = aV B − aS B2/3 − aC
Z(Z − 1)

B1/3
− aAδ

2B + δ(N ,Z)

• aV = 15.8MeV, aS = 18MeV, aC = 0.625MeV, aA = 23.7MeV
• Approach the SEMF using APA with n3 α-particles
• L024-Skyrme APA Coulomb energy estimation aC = 0.608MeV [Ma, Halcrow &

Zhang (2019)]
• Can identify aA = SN(0) = 22.9MeV (single α-particle as Vcell → ∞)
• Energy of a B = 4n3 chunk in the APA:

EB
chunk =

Eα
crystal

4
B + Echunk

S , Echunk
S = 6n2Eα

face =
6Eα

face
42/3

B2/3

• Classical binding energy of an isospin symmetric chunk:

Eb = BE1 − EB
chunk =

(
E1 −

Eα
crystal

4

)
B −

6Eα
face

42/3
B2/3
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Results from L024-model:
• Experimental: aV ' 15.8 MeV
• Predicted: aV = 18.1 MeV

• Experimental: aS ' 18 MeV

• Predicted: aS = 75.5 MeV
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Final remarks

• Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS)
Skyrme model [Rho et al. (2022)]

• Attributed to the behavior of the chiral condensates combined with the dilaton
condensate near saturation n0

• There is a topological “phase” transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (1/2-crystal)

• Analogous to “pseudo-gap” phenomenon in condensed matter physics
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Open problems

• Multi-wall solution improves on compressibility at saturation

• However, the compression modulus is still too high, K0 ∼ 4Kexp

• Inhomogeneous solutions are not enough alone
⇒ Inclusion of other d.o.f. such as vector mesons necessary?
• Need to consider anisotropic deformations of neutron star matter?
• To really describe the low density regime of NS, the electrostatic interaction needs

to be included
• Estimation of SEMF coefficients aV , aS , aC , aA

⇒ Reducing binding energies and using the APA should be able to estimate the
coefficients
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