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Motivation

® Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

® Neutron stars within the Skyrme framework for the 1/2-crystal and a-crystal are
generically crustless
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® Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

® Neutron stars within the Skyrme framework for the 1/2-crystal and a-crystal are
generically crustless

® BPS neutron stars have maximal masses too large ~ 3 — 4M, [Adam et al. (2015)]
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® Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

® Neutron stars within the Skyrme framework for the 1/2-crystal and a-crystal are
generically crustless

® BPS neutron stars have maximal masses too large ~ 3 — 4M, [Adam et al. (2015)]

® NS with crust previously obtained by interpolating between high density Skyrme
EoS and low density nuclear EoS [Adam at al. (2020)]
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Motivation

® Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

® Neutron stars within the Skyrme framework for the 1/2-crystal and a-crystal are
generically crustless

® BPS neutron stars have maximal masses too large ~ 3 — 4M, [Adam et al. (2015)]

® NS with crust previously obtained by interpolating between high density Skyrme
EoS and low density nuclear EoS [Adam at al. (2020)]

® Can we obtain a single EoS that yields neutron stars with crusts?
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Motivation

® Main aim: Describe baryonic matter on all scales from finite atomic nuclei to dense
infinite nuclear matter

® Neutron stars within the Skyrme framework for the 1/2-crystal and a-crystal are
generically crustless

® BPS neutron stars have maximal masses too large ~ 3 — 4M, [Adam et al. (2015)]

® NS with crust previously obtained by interpolating between high density Skyrme
EoS and low density nuclear EoS [Adam at al. (2020)]

® Can we obtain a single EoS that yields neutron stars with crusts?

® Can these neutron stars have sufficient maximal masses?

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk

Motivation

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Skyrme crystals and phases of skyrmion matter

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals
and phases of

skyrmion matter

Quantum

skyrm cr
and the
ymmetry
Neutron
T th
ni-empiri
m ormula
(SEMF)
Final remarks




Generalized Skyrme model .Q

* Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)
Isospin
nuel \:: rSy:j e in
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Quantum
skyrm

and th

symme

Neutrc

T the

s mpirical
mass formula
Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .ﬂ‘

e Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)

® Standard massive Skyrme model: e
nuclear matter in
F2 m2 F2 h the Skyrme
L = _ 7 7y (Id — — " Tr(L, L, T gra VB (1L L|[Lo, L model
o sip Trd =)+ qgp g TrLuLe) + 555979 Tr ([, Lullla, L)
Motivation

Skyrme crystals
and phases of
skyrmion matter

Quantum

skyrm

and tk

symm rgy

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .Q

e Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)
® Standard massive Skyrme model: tsospin

asymmetric
nuclear matter in
2,12 2 the Skyrme

Fzm F
L = 7T T (Id — S Tr (L L, o uﬁT L,,L[La, L model
o sip Trd =)+ qgp g TrLuLe) + 555979 Tr ([, Lullla, L)
I—>L# = QOTOH()O S 511(2) Outline of talk
Motivation

Skyrme crystals
and phases of
skyrmion matter

Quantum

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .ﬂ‘

e Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)

® Generalized Skyrme model: .
nuclear matter in
F2 m2 F2 ﬁ the Skyrme
L = 7 T Tr(Id — — " Tr(L, L, g VB (1L L[La, L model
0246 373 r ( @) + 6n? r(LulLy) + 39029 9 r (L Lol 8l) Paul Leask
- 774)\29'MVB“BV Outline of talk
Motivation

Skyrme crystals
and phases of
skyrmion matter

Quantum

skyrm

and tk

symm rgy

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .ﬂ‘

e Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)

® Generalized Skyrme model: e
nuclear matter in
F2 m2 F2 ﬁ the Skyrme
L = — ™ Ty (Id — — " Tr(L, L, ——g" g8 Tr([L,, L,)[Lo, L model
0246 373 r ( @) + 6n? r(LulLy) + 39029 9 r (L Lol 8l) Paul Leask
— 774)\29'MVB“BV7 AZ = qi/(27r4mi) Outline of talk
Motivation

Skyrme crystals
and phases of
skyrmion matter

Quantum

skyrm

and tk

symm rgy

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .Q

® Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks) "
® Generalized Skyrme model: asymmetric

nuclear matter in
the Skyrme

F2 m2 F2 6 model
= - T TTr(Id — - ¢" Tr(L,L, #eg"P Tr ([L,,, Ly|[La, L P ezl
Lo246 87,3 I'( (,0) + 167Lg I“( m )+ 32629 g I'([ I ][ ﬁ]) e
— 1\2g"B,B,

Skyrme crystals

. . . X 7'['0 ﬂ'+ and pbases of
® Lightest mesons (pions) are the encoded in the Skyrme field ¢ = o~ 0] € SU(2) Elkkesd
Quantum
skyrm
and th
Neutr
the
al
m mula
(SEM
Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model .Q

® Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks) "

® Generalized Skyrme model: asymmetric

nuclear matter in

the Skyrme
F2 m2 F2 model
- _ 2 e (1d — T g Tr(L, L, wa B e (1 L[Ly, L Paul Leask
Lo246 87,3 I'( (,0)-‘1- 167Lg f( m )+ 32629 g I'([ s ][ ﬁ]) e
— 1\2g"B,B,

Skyrme crystals
0 ﬂ'+ and phases of

® Lightest mesons (pions) are the encoded in the Skyrme field ¢ = (;r 7_T0> € SU(2) R

Quantum

® Exhibits short range w-meson-like repulsion while still describing scalar meson effects and tt

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model

® Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)

Generalized Skyrme model:

F2m2 F? 5
= — T TTr(Id — — g™ Tr(L,L, #eg"P Tr ([L,,, Ly|[La, L
Lo246 373 r ( ¢) + 6n? r(L,Ly,) + 3229 9 v ([Ly, L[ 5])
— 71'4)\29“”3“8”

0 ﬂ.+

Lightest mesons (pions) are the encoded in the Skyrme field p = (;r 7?0) € SU(2)

Exhibits short range w-meson-like repulsion while still describing scalar meson effects

Baryon d.o.f. not explicitly visible — topology: Homotopy invariant <+ Baryon number

Hg(M):ZaB:/ dPzy/=gB°, Bt =
M

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model

1 vpo
mﬁu P Tr(LprLg)

EIEKEEREERE

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask
Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Final remarks




Generalized Skyrme model .ﬂ.

® Effective Lagrangian of mesonic fields: ¢ : R x M — SU(Ny), Ny = 2 (u,d-quarks)
® Generalized Skyrme model:

Isospin
asymmetric
nuclear matter in

the Skyrme
F2 m2 F2 model
- _ 2 e (1d — —T g Tr(L, L, wa B e (1 L,|[La, L Paul Leask
Lo246 8723 I'( (,0)-‘1- 167Lg f( m )+ 32629 g 1“([ s H ﬁ]) e
— 1\2g"B,B,

Skyrme crystals
0 ’/T+ and phases of

® Lightest mesons (pions) are the encoded in the Skyrme field ¢ = (;r 7_T0> € SU(2) R

Quantum

® Exhibits short range w-meson-like repulsion while still describing scalar meson effects
® Baryon d.o.f. not explicitly visible — topology: Homotopy invariant <> Baryon number Neutron <tare

e*P? Tr(L,L,L,)

1
Hy(M :ZaB:/ dPry=gB°, B'= ——
(M) ; , TN
® Baryons realized as non-perturbative excitations of the pions = solutions of the
Euler—Lagrange field equations - topological solitons (skyrmions)

Final remarks

Paul Leask — lsospin asymmetric nuclear matter in the Skyrme model «O» «Fr « = «E)»



Generalized Skyrme model

® We are interested in static solutions and adopt the usual Skyrme units of length
L =2h/eF, and energy E = F, /4e

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Quanti
skyrmion cr

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model

® We are interested in static solutions and adopt the usual Skyrme units of length
L =2h/eF, and energy E = F, /4e
® [n Skyrme units the energy-momentum tensor is
2 (9( 79‘60246) 7T4)\264F72r (_I
_ \ I

V=g  dg" 253
1
= — TI‘(L“LV) — Zgaﬁ TI‘([LM, La][Ll,, Lg]) + QCGBHBV + g“y£0246

Ty

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals
and phases of

skyrmion matter

Quantum

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model

® We are interested in static solutions and adopt the usual Skyrme units of length
L =2h/eF, and energy E = F, /4e
® [n Skyrme units the energy-momentum tensor is

1
Tl“/ = — TI‘(LHLV) — Zgaﬁ TI‘([LM, La][Ll,, Lg]) + QCGB“BV + g“y£0246

® The adimensional static energy is thus (Too = Estat + Exin)
Mpg(p, g9) = / d*zv/=g Estat
M

1 . 1 . .
:/ d3x\/9{29” Tr(L;Lj) — 1*692k9]l Tr ([Li, Lj][Lg, Li])
M

Ezjkeabc

Tr(la — ) + ¢ Tr(L;L;Ly) Tr(LaLbLC)}

EIEREEREEEE

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals
and phases of

skyrmion matter

Quantum

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Generalized Skyrme model

® We are interested in static solutions and adopt the usual Skyrme units of length
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Motivation of Skyrme crystals

® We need to understand phases and phase transitions of nuclear matter

® Ground state of dense nuclear matter has a crystalline structure in the classical
approximation
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Motivation of Skyrme crystals

® We need to understand phases and phase transitions of nuclear matter

® Ground state of dense nuclear matter has a crystalline structure in the classical
approximation

® In order to determine skyrmion crystals, we first need some numerical machinery!

® We will employ the usual vector (or o-model) formulation and introduce the metric
independent integral formulation (MIIF)
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Summary of [Harland, Leask & Speight (2023)]

® For fixed Lga4-field o, there always exists a critical point of Mpz(yp, g) w.r.t. variations
of g and it is in fact a unique c.p. (generalizes to L246-model)

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Quanti
skyrmion cr

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Summary of [Harland, Leask & Speight (2023)]

® For fixed Lga4-field o, there always exists a critical point of Mpz(yp, g) w.r.t. variations
of g and it is in fact a unique c.p. (generalizes to L246-model)

® Four crystal solutions were found for unit cells with charge B..; = 4

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Summary of [Harland, Leask & Speight (2023)]

® For fixed Lga4-field o, there always exists a critical point of Mpz(yp, g) w.r.t. variations
of g and it is in fact a unique c.p. (generalizes to L246-model)

® Four crystal solutions were found for unit cells with charge B..; = 4

® These are the $1/21 Par Pchain and Psheet CryStals

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk
Motivation
Skyrme crystals

and phases of
skyrmion matter

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Summary of [Harland, Leask & Speight (2023)] .ﬂ

Isospin
asymmetric
nuclear matter in

® For fixed Lga4-field o, there always exists a critical point of Mpz(yp, g) w.r.t. variations iz Sy
of g and it is in fact a unique c.p. (generalizes to Ly246-model) Paul Leask
® Four crystal solutions were found for unit cells with charge B..; = 4 o
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By = Mp(¢lixea 9)
® We use arrested Newton flow on SPD3 to minimize £, w.r.t. g

® Explicitly, we are solving the system of 2nd order ODEs
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® In conjunction, we minimize Mp(p, glg.eq) W-r-t. ¢ for some initial field ¢
= Laddering of minimizations as mentioned in Martin's talk
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An example: the a-particle

n
(a) Initial configuration of a B =4 RMA in a (b) Relaxed final solution of the cubic a-particle
non-cubic lattice A crystal
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Phases of skyrmion matter

® Consider fixed baryon density np variations of Mg(p, g) w.rt. g
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Phases of skyrmion matter .Q

Isospin
e Consider fixed baryon density np variations of Mg(y, g) w.r.t. g . A
the Skyrme
® vol, is required to be invariant under variations g, of the metric: model
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Phases of skyrmion matter

® Consider fixed baryon density np variations of Mg(p, g) w.rt. g

® vol, is required to be invariant under variations g, of the metric:

d

1 ..
/ d3=’13\/9s = */ d3l’\/§9”5gij =
dS T3 2 T3

s=0

= Jg is trace-free, i.e. dg € &
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Phases of skyrmion matter

® Consider fixed baryon density np variations of Mg(p, g) w.rt. g

® vol, is required to be invariant under variations g, of the metric:

d

ds

1 ..
/ d*z\/g; = 5/ d*z/9975g;; = 0
s=0JT3 T3

= Jg is trace-free, i.e. dg € &
® |eads to modifying the (fixed field) stress-energy tensor via the mapping
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Phases of skyrmion matter

® Consider fixed baryon density np variations of Mg(p, g) w.rt. g

® vol, is required to be invariant under variations g, of the metric:

d

ds

1 ..
/ d*z\/g; = 5/ d*z/9975g;; = 0
s=0JT3 T3

= Jg is trace-free, i.e. dg € &
® |eads to modifying the (fixed field) stress-energy tensor via the mapping
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Phases of skyrmion matter

® Consider fixed baryon density np variations of Mg(p, g) w.rt. g

® vol, is required to be invariant under variations g, of the metric:

d

ds

1 ..
/ d*z\/g; = 5/ d*z/9975g;; = 0
s=0JT3 T3

= Jg is trace-free, i.e. dg € &
® |eads to modifying the (fixed field) stress-energy tensor via the mapping

® Convergence criterion becomes max(S,) < tol

® This process enables us to determine an energy-density curve
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Phases of skyrmion matter .Q

Isospin

e Consider fixed baryon density np variations of Mg(y, g) w.r.t. g e e
the Skyrme
® vol, is required to be invariant under variations g, of the metric: model
Paul Leask
d Outline of talk

ds

1
/ d3$\/§ = 5 / d3$\/§g jégij =0 Motivation
s=0JT3 T -

Skyrme crystals

= {§g is trace-free, i.e. g € & e
® Leads to modifying the (fixed field) stress-energy tensor via the mapping Qi
and
- 1 mmetr
S(p = Sy :S<P7 gTrg(Scp)g Neutron
T

~ emi )

® Convergence criterion becomes max(S,) < tol
® This process enables us to determine an energy-density curve arks

® This is key to obtaining an equation of state within our framework
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Phases of skyrmion matter .Q
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Isospin quantization .&

® Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)] i

asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk

Motivation

[eET
skyrmion crystals
and the
symmetry energy

Neutro

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Isospin quantization .ﬂ

® Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)] i
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Isospin quantization

® Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)]

¢ Corresponding isorotational angular velocity w; = *’l.TI'(TjATA)

® Maurer—Cartan left current transforms as

7 .
= ot
ALlAT, /1222172,3 Tl_2<p [Taw]EEu(Z)

L,=¢'0,p=
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Isospin quantization

® Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)]

¢ Corresponding isorotational angular velocity w; = *’l.TI'(TjATA)

® Maurer—Cartan left current transforms as

Aw; T; AT =0

AL;At, p=1=1,2,3

. i i
L,=¢'0,p = T = §<pT[T , ] € su(2)

® Usual approximation: the wave function ¥ € H is non-vanishing only on minimal
energy configurations and their symmetry orbits (rigid body quantization)
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Isospin quantization

Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)]

¢ Corresponding isorotational angular velocity w; = *’l.TI'(TjATA)

Maurer—Cartan left current transforms as

o 7 .
L,=¢'0,p = T; = -t 1%, o] € su(2
W= PO = N Apat u—i=1.23 5 @[T ¢l € su(2)
Usual approximation: the wave function ¥ € H is non-vanishing only on minimal
energy configurations and their symmetry orbits (rigid body quantization)

Effective Lagrangian restricted to isospin orbit of skyrmion: L;ot = %wi Usjw;
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Isospin quantization

® Skyrme model is non-renormalizable = semi-classical quantization:
o(z) = @(z,t) = A(t)p(z)AT(t) [Klebanov (1985)]

¢ Corresponding isorotational angular velocity w; = *’l.TI'(TjATA)

® Maurer—Cartan left current transforms as

A Aw; T: AT, =0 i g
L,=¢'0,p = R T; = -t 1%, o] € su(2
=P 0up {ALiAT, L= i=1.2.3 5 @[T ¢l € su(2)

® Usual approximation: the wave function ¥ € H is non-vanishing only on minimal
energy configurations and their symmetry orbits (rigid body quantization)

® Effective Lagrangian restricted to isospin orbit of skyrmion: L.,z = %wi Usjw;

® The isospin inertia tensor is a left invariant metric on SO(3),

Uy = — /1.3 d3x\/§{Tr( T; Tj) + igkl Tr([Lka Ti][Ll7 Tj])

C6 kmn _lab
,ngle e Tr(T;Ly,Ly,) Tr(TjLaLb)}
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Isospin quantization .&
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Isospin quantization .ﬂ
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Isospin quantization .ﬂ
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® Angular momentum operator canonically conjugate to w, K; = 0Lyt /0w; = Ujjw; the Skyrme

model
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Isospin quantization .ﬂ
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* Body-fixed K — space-fixed I: I; = —D(A);K;, (D(A); = & Tr(r?ArIAT))
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Isospin quantization
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® Angular momentum operator canonically conjugate to w, K; = 0Lyt /0w; = Ujjw; G e

® Body-fixed K — space-fixed I: I; = —D(A);K;, (D(A)y =4 Tr(r°ATIAT)) Paul Leask

e Canonical quantization: classical momenta (K, I) — quantum operators (K, I) HT' o

® Quantum Hamiltonian 57 = %QKUAIA{T + Mp Sigrm
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Isospin quantization .ﬂ
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® Angular momentum operator canonically conjugate to w, K; = 0Lyt /0w; = Ujjw; e
® Body-fixed K — space-fixed I: I; = —D(A);K;, (D(A)y =4 Tr(r°ATIAT)) el
e Canonical quantization: classical momenta (K, I) — quantum operators (K, T) Suneeri
® Quantum Hamiltonian 57 = %ZKUAIA{TvL Mg Skyrme crystals
® To determine bound states with definite energy we must solve the corresponding 5
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Isospin quantization

® Angular momentum operator canonically conjugate to w, K; = 0Lyt /0w; = Ujjw;
® Body-fixed K — space-fixed I: I; = —D(A);K;, (D(A)y =4 Tr(r°ATIAT))

e Canonical quantization: classical momenta (K, I) — quantum operators (K, I)

® Quantum Hamiltonian JZ = %QKUAIA{T + Mg

® To determine bound states with definite energy we must solve the corresponding
Schrédinger equation, 77 |¥) = E|T)

® Now consider a rigidly iso-spinning crystal with N1 unit cells and baryon number
B = Ncelchell =N+7

= A V) = (Neen M + E;1,) |¥), where I, I35 are quantum numbers
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Isospin quantization .ﬂ

® Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal i
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Isospin quantization .~U

® Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal

® The crystal is infinitely extended with infinite baryon number = extremely difficult e Sy
computation! mod!
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Isospin quantization .ﬂ.
. N . : ®
® Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal .
® The crystal is infinitely extended with infinite baryon number = extremely difficult e Sy
computation! Pa“l‘sk
® The following restrictions are imposed [Adam et al. (2022)]:
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Isospin quantization .ﬂ.
. N . : ®
® Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal .
® The crystal is infinitely extended with infinite baryon number = extremely difficult e Sy
computation! Pa”l‘sk
® The following restrictions are imposed [Adam et al. (2022)]: ,
® |U) =Qp,,, 1), where Neen — oo in the thermodynamic limit. Outline etk
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Isospin quantization

® Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal
® The crystal is infinitely extended with infinite baryon number = extremely difficult
computation!
® The following restrictions are imposed [Adam et al. (2022)]:
® |U) = Q®n,., [¥), where Neen — oo in the thermodynamic limit.
® The symmetry of the classical configuration in each unit cell is extended to the whole
crystal, so both wavefunctions share the same point symmetry group
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Isospin quantization

Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal
The crystal is infinitely extended with infinite baryon number = extremely difficult
computation!
The following restrictions are imposed [Adam et al. (2022)]:

® |U) = Q®n,., [¥), where Neen — oo in the thermodynamic limit.

® The symmetry of the classical configuration in each unit cell is extended to the whole

crystal, so both wavefunctions share the same point symmetry group

Mean-field approximation of a large chunk in a generic quantum state with fixed

eigenvalue 7N 1-9
S _(Z=N) _ (1=,

2 2 ¢

el Beell,  7yp is the proton fraction
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Isospin quantization

Calculating the isospin correction to the energy of the crystal requires knowledge of
the quantum state of the whole crystal
The crystal is infinitely extended with infinite baryon number = extremely difficult
computation!
The following restrictions are imposed [Adam et al. (2022)]:

® |U) = Q®n,., [¥), where Neen — oo in the thermodynamic limit.

® The symmetry of the classical configuration in each unit cell is extended to the whole

crystal, so both wavefunctions share the same point symmetry group

Mean-field approximation of a large chunk in a generic quantum state with fixed

eigenvalue 7N 1-9
S _(Z=N) _ (1=,

2 2 ¢
I = I3 minimizes the isospin energy since by definition I? > I3

el Beell,  7yp is the proton fraction
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Isospin quantization .ﬂ

® Calculating the isospin correction to the energy of the crystal requires knowledge of

the quantum state of the whole crystal .
® The crystal is infinitely extended with infinite baryon number = extremely difficult e Sy
computation! Pa”l‘sk

® The following restrictions are imposed [Adam et al. (2022)]:
® |U) =Qp,,, 1), where Neen — oo in the thermodynamic limit. Culine of el
® The symmetry of the classical configuration in each unit cell is extended to the whole e
crystal, so both wavefunctions share the same point symmetry group i,i;'il‘
® Mean-field approximation of a large chunk in a generic quantum state with fixed ;u::tum :
eigenvalue skyrmion crystals
I3 = (z ; ) =— (a _22% ) NeetBeell,  7p is the proton fraction ey
Neutre s
® [ = I3 minimizes the isospin energy since by definition 1 > I? Towards the

® The isospin correction to the energy of the crystal is found to be a

R2I(I 4 1) h2]32( 1 2 >

) y
B — E]7]3 . h 5 9 Final remarks
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Symmetry energy .&.

® The asymmetry of matter is determined by the isospin asymmetry parameter g
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Symmetry energy

® The asymmetry of matter is determined by the isospin asymmetry parameter
d=(N—-2)/(N+2Z)=1—-2,
® Binding energy per baryon number of asymmetric nuclear matter is given by
no = 0.160 fm >

E
E(HB, (5) = EN(nB) + SN(TLB)(52 + 0(53), EN('H,Q) = 923 MeV
Sn(ng) =~ 30 MeV
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Symmetry energy

® The asymmetry of matter is determined by the isospin asymmetry parameter
d=(N—-2)/(N+2Z)=1—-2,
® Binding energy per baryon number of asymmetric nuclear matter is given by

B no = 0.160 fm >
E(HB, (5) = EN(nB) + SN(TLB)(52 + 0(53), EN('H,Q) = 923 MeV
Sn(ng) =~ 30 MeV

® The isospin symmetric binding energy is defined by Exy = Mp/B
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Symmetry energy .ﬂ"’
o®
® The asymmetry of matter is determined by the isospin asymmetry parameter e
d=WN=-2)/(N+2Z)=1=2y e Sgrme
® Binding energy per baryon number of asymmetric nuclear matter is given by model
Paul Leask
E np = 0.160 fm73 Outline of talk
E(nBv 8) = En(np) + Sn(np)6* + O(6°), En(ng) = 923 MeV Motivat
Sn(ng) =~ 30 MeV
® The isospin symmetric binding energy is defined by Exy = Mp/B p—
® The symmetry energy Sy dictates how the binding energy changes going from S GRRELE
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Symmetry energy .ﬂ"’
o®
® The asymmetry of matter is determined by the isospin asymmetry parameter e
§=(N-2)/(N+2Z)=1-2v, rucar e i
® Binding energy per baryon number of asymmetric nuclear matter is given by mode!
Paul Leask
E nog = 0160 fm73 Outline of talk
E(nB’ 8) = En(np) + Sn(np)6* + O(6°), En(ng) = 923 MeV Motiva
SN(nQ) ~ 30 MeV Sk
and
kyrmion matter
® The isospin symmetric binding energy is defined by Exy = Mp/B p—
® The symmetry energy Sy dictates how the binding energy changes going from S GRRELE
symmetric (§ = 0) to asymmetric (6 # 0) nuclear matter symmetry energy
e |t is obtained from the quantum isospin energy Hetron stars
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Symmetry energy

® The asymmetry of matter is determined by the isospin asymmetry parameter
d=(N-2)/(N+2Z)=1—-2,
® Binding energy per baryon number of asymmetric nuclear matter is given by

B

E
(np,8) = Ex(ng) + Sn(np)d® + 0(5°), | En(ng) = 923 MeV

ny = 0.160 fm >

SN(’I’LO) ~ 30 MeV

® The isospin symmetric binding energy is defined by Exy = Mp/B

® The symmetry energy Sy dictates how the binding energy changes going from
symmetric (§ = 0) to asymmetric (§ # 0) nuclear matter

® |t is obtained from the quantum isospin energy

® At saturation we find

Eiso hz
SN(nB) B Bcellfs2 B 8U33

VeelnB

ng = 0.160 fm >, En(ng) = 912MeV and Sy (ng) = 22.7 MeV
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Symmetry energy and the cusp structure .ﬂ.

® Cusp below saturation at fzopin
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® Cusp below saturation at fzopin

38 —— . . . . asymmetric

Ny ~ 3n0/4 nuclear matter in
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® The simultaneous $-decay and electron capture processes allow the calculation of the Neutron stars
proton fraction +, at a prescribed density np [Adam et al. (2022)] Towards the
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Cusp also present at 7.

Reinforces the proposition that
the cusp indicates the start of a
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Particle fractions of npeu matter in 3-equilibrium

® Global charge neutrality by including background of charged leptons n, = n. + n,

® |epton-nucleon exchange described by simultaneous processes [Glendenning (2000)]:
® Electron capture: p+1— n+ v
® fB-decay: n — p+ 1+ 7

® As np increases then so too does n, and n. — e > m, = 105.66 MeV

= Energetically favourable for muons to appear
® The simultaneous ($-decay and electron capture processes allow the calculation of the
proton fraction +, at a prescribed density np [Adam et al. (2022)]
® Energy of a relativistic Fermi gas at zero temperature (lepton energy)

nkp
Ei(nz) = nB;Lglylﬂ / K24+ m2dk, ke = (3 m)"?, n=ynp

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk

[eET
skyrmion crystals
and the
symmetry energy

Neutrc

Final remarks




Particle fractions of npeu matter in 3-equilibrium .ﬂ"
o ®

® Global charge neutrality by including background of charged leptons n, = n. + n, l;’t
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® Can obtain the pressure p and
energy density p from the
E(np) curve, with

E np
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= Isospin asymmetric nuclear
matter EoS pyw = puw (p)
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Coupling to gravity

® In order to describe neutrons stars within the Skyrme framework, we need to couple
the generalized Skyrme model to gravity

® Introduce the Einstein—Hilbert—-Skyrme action

B 1
16w G

/ d4x\/ 7gR + Smatter
h

® S atter describes matter inside NS

® NS Interior well described by perfect fluid of nearly free neutrons & degenerate gas of

electrons:
2 6Smatter

TV e
® The energy density p and the pressure p are related by the (multi-wall) crystal EoS
p(p) = paiw (p) [Adam et al. (2020)]

Ty = = (p(p) + p)upuy + pguv
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® Qur aim is to calculate My, and Ry,ax for a NS described by our system
® Need to solve the Einstein equations G, = 87 GT},, for some particular choice of g,
® Simplest case: static & non-rotating neutron star
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The Tolman—-Oppenheimer—Volkoff system

Our aim is to calculate M, and Ry, for a NS described by our system

Need to solve the Einstein equations G, = 8w G'T},,, for some particular choice of g,
Simplest case: static & non-rotating neutron star

Spherically symmetric ansatz of the spacetime metric [Adam et al. (2015)]

ds* = —A(r)dt* + B(r)dr® + r* (d6” + sin® 0d¢*) = g, dz*dz”
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® Qur aim is to calculate My, and Ry,ax for a NS described by our system e
® Need to solve the Einstein equations G, = 8w GT),, for some particular choice of g, [
e Simplest case: static & non-rotating neutron star Pa:"fisk
® Spherically symmetric ansatz of the spacetime metric [Adam et al. (2015)] _
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Neutron star properties and the mass-radius curve
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® Mass M obtained from
Schwarzschild metric definition
outside the star

1

B(RNS) = 1 _ 2MG
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® Mmax = 2.0971 Mg, occurring
for a neutron star of radius
Rns = 13.12km.

= Resulting neutron stars agree
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observational data
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a-particle approximation (APA)

® Bethe—Weizsacker SEMF:
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a-particle approximation (APA) .Q.
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a-particle approximation (APA) .Q:
®
® Bethe-Weizsicker SEMF: e
2(7Z -1 e
Ey=ayB — asB*® — ac% — ap6’B+6(N, Z) e
o ay =158 MeV, ag = 18MeV, ac = 0.625MeV, ay = 23.7 MeV
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a-particle approximation (APA)

Bethe—Weizsacker SEMF:
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® Method: Approach the SEMF using APA with n® a-particles
® Lo24-Skyrme APA Coulomb energy estimation ac = 0.608 MeV [Ma, Halcrow &

Zhang (2019)]
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Skyrme model [Rho et al. (2022)]

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk

Motivation

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Final remarks .ﬂ.

Isospin
asymmetric
nuclear matter in
the Skyrme

model

Paul Leask

® Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS) Outine of tal
Skyrme model [Rho et al. (2022)] Motivation

® Attributed to the behavior of the chiral condensates combined with the dilaton el

condensate near saturation ng

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Final remarks

® Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS)
Skyrme model [Rho et al. (2022)]

® Attributed to the behavior of the chiral condensates combined with the dilaton
condensate near saturation ng

® There is a topological “phase” transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (1/2-crystal)

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

Outline of talk

Final remarks

Paul Leask — Isospin asymmetric nuclear matter in the Skyrme model



Final remarks .ﬂ.

Isospin
asymmetric
nuclear matter in
the Skyrme
model

Paul Leask

® Cusp structure in the symmetry energy observed in the hidden-local-symmetric (HLS) Outline of eal
Skyrme model [Rho et al. (2022)] Vot

® Attributed to the behavior of the chiral condensates combined with the dilaton e
condensate near saturation ng

® There is a topological “phase” transition where the FCC lattice of hedgehog skyrmions
fractionalize into half-skyrmions (1/2-crystal)

® Analogous to “pseudo-gap” phenomenon in condensed matter physics
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= Inclusion of other d.o.f. such as vector mesons necessary?
® Need to consider anisotropic deformations of neutron star matter?

® To really describe the low density regime of NS, the electrostatic interaction needs
to be included
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® However, the compression modulus is still too high, Ky ~ 4Ky, 7_

® Inhomogeneous solutions are not enough alone (ml‘¢ .
= Inclusion of other d.o.f. such as vector mesons necessary?

® Need to consider anisotropic deformations of neutron star matter?
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® Multi-wall solution improves on compressibility at saturation e
Paul Leask
® However, the compression modulus is still too high, Ky ~ 4Ky,
Outline of talk
® |Inhomogeneous solutions are not enough alone Mot

= Inclusion of other d.o.f. such as vector mesons necessary?
® Need to consider anisotropic deformations of neutron star matter?
® To really describe the low density regime of NS, the electrostatic interaction needs
to be included
® Estimation of SEMF coefficients av, ag, ac, aa
= Reducing binding energies and using the APA should be able to estimate the
coefficients
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