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Motivation

e The Skyrme model is a nonlinear field theory of pions (Skyrme, 1961)
e Nuclei are modelled as topological solitons (Skyrmions)

e Want to understand phases, and transitions of phases, of nuclear
matter in the Skyrme model

e Ground state of nuclear matter has a crystalline structure in the
classical approximation

e Many Skyrmions look like chunks of the infinite crystal (Feist et al.,
2013)
e Two candidates proposed:

e Cubic lattice of half-Skyrmions
e a-particle lattice

e Which is the lower energy solution (classically)?

e Are the two related?
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Skyrme model

e Topological solitons: smooth, spatially localized solutions of non-linear
field theories, topologically stable against decay to vacuum.
e Skyrme field ¢ : (2, 9) — (G, h), e.g. R®/A = SU(2)
o Left-invariant Maurer-Cartan form 6 = ¢~ ldp € Q1(G) ® g
Associated 2-form Q € Q2(G) ® g, Q(X,Y) := [0(X),0(Y)]
Ad(SU(2)) invariant inner product, h(X,Y) = %Tr(XTY)
Skyrme energy functional

ij €4 ia_j
Elp] = /E {cgg Jh(Li, Lj) + Eg gjbh(Qij,Qab) + COV(cp)} voly
e VV :SU(2) — R is the pion mass potential,
V(p) =m?Tr(1 - ¢)

e Usual coupling constants co =c2 =1 and ¢4 = 1/4
e Derrick’s scaling argument F4 = FEo 4+ 3E

e Skyrmions are local minima of F

e Found numerically by discretising E and applying a gradient descent
method
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Energy bound

e Pion mass dependent topological energy bound (Harland, 2014)

e Want to find the strongest lower bound attainable

e Faddeev bound: asFEs + asFy > 127r2a1/2 1/2|B|

e Lower bound: aogFEo + asFy > 512fF2(3/4) 1/4 3/4|B|

e Split F into two terms and use the two above bounds to find a new
topological energy bound:

2
E >127%|B|, a=+v1—t+-——t**
3V

where p = ﬁ% (Gudnason & Halcrow, 2022)
e m = 0(u — 00) yields the familiar Faddeev bound E > 127%|B|
e m — oo (u = 0) gives the lower bound

e For all other p the bound is stronger

e Bound maximised by § da —0—>t—1——2(1/1+:7—1)
E

e Define E _
bound 127T2Oé|B|
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History of Skyrme crystals

(a) Half-Skyrmions lattice (b) a-particle

e SC crystal of Skyrmions (Klebanov, 1985)

e BCC crystal of half Skyrmions (Goldhaber & Manton, 1987)

e SC crystal of half Skyrmions (Kugler & Shtrikman, 1988; Castillejo et
al., 1989)

e Building Skyrmions from the a-particle (Battye et al., 2007)

e Massless (Silva Lobo, 2010) and massive (Adam et al., 2022) phase
transition between a-particle and SC crystal of half Skyrmions

e Constructing Skyrmions from crystal chunks (Feist et al., 2013)

e Phase transitions between different crystals (Perapechka & Shnir, 2017) 6/20



History of Skyrme crystals

ob
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(c) B=24 (d) B =32

(a) B=38
(b) B =12

Figure 2: Skyrmions constructed from the a-particle

(a) Constructed from two twisted a-particles (Battye et al., 2007)
(b

(c
(b

Constructed from three twisted a-particles (Battye et al., 2007)

Constructed from six twisted a-particles (Feist et al., 2013)

)
)
)
) Constructed from eight a-particles (Battye et al., 2007)
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Variational problem

e Skyrme crystals are maps
@ : RS/A—>SU(2), A:{n1X1 + n2Xo +n3X3:n; EZ}
e Ceneral idea (Speight, 2014): identify (R®*/A,g) +— (R®*/Z3, g) via the
diffeomorphism F : T — R®/A where T? = R*/Z? and
F(X) = .AX, .A = [Xl X2 Xg]
e Fix Skyrme field to be the map ¢ : T? — SU(2)
e Metric on T? is the pullback g = F*g, with g;; = X; - X;
e Vary metric gs with go = F*§ <= vary lattice As with Ag = A

e Energy minimized over all variations of g <= optimal period lattice A
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Variational problem

Let SPD,, be the space of symmetric positive-definite n x n-matrices.
e For fixed ¢, can consider the Skyrme energy to be a map E : SPD3 — R

e F is convex when restricted to geodesics = uniqueness of the lattice

Simple case: A = LZ3, energy scales as E = LEo + %E4 + L3Ey and

dE , 1| B By \° | AEs
a7 =gl ag <3E0> 3Fo

In general, optimal period lattice A:
& Massless pions: explicit solution
% Matrix square root
{ Massive pions: numerical solution
%+ Arrested Newton flow or nonlinear conjugate gradient descent
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Matrix square root

e Massless case V(@) = 0 reduces the problem to

K \° ¢
g = 2k,
Vdet g C4
where, in sigma model notation,

,Cij 2/ (817T . 0j71') VOlg
=

and

K7 = Eiabade/ {(Oam - Oem)(Op7 + Oam) — (Dam - Dgm)(Opm - Demr) } vOlg
b

e Matrix square root: Now 0

0
X/ZKT:PDIQP’I, DY =] 0 VX 0
€
g 0 0 Vi

e Setting g = ﬁ yields § = PDY2p~Kc™!

we arrive at g = —2=.

e Finally, using the fact that det g = Tots

1 _
(det )2
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Numerical approach to the lattice

Aim: solve the unconstrained optimisation problem

min FE(g)

geSPD3

Accelerated 2nd order gradient descent with flow arresting

Solve Newton’s equations of motion for a particle on SPD3 with
potential energy F(g) using 4th order Runge-Kutta:

oF p g
- T ) 0 =
695 s=0

Restart flow if E(t + d6t) > E(t) (arresting)

0559 —o =

e Terminate flow when STE < 1075 everywhere
s ls=0
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FCC lattice

e Obtained from Fourier series expansion initial
configuration (Castillejo et al., 1989)

2

2
1 s s2 825
o= e, T :Sl\/ 22ty

. 3
and cyclic, where ¢; = cos (272” ) and

: 2ra’
s = sin (222)

e Symmetries (Kugler & Shtrikman, 1989):
Ar: ('1" y7 ) (_$7y7 Z)

3 1 2 3
Figure 3: Massless FFC lattice 7, ! 7T , ) = (o, =1, w7, )

(Kugler & Shtrikman, 1988) and Ay

T,Y,z Y, 2,
(Castillejo et al., 1989) )= )

ot 7%) (0,772,7r3,7rl)

o, 7T3)l—>(0 . 7r3,77r2)
Dy : z,Y,z ) ( +L/27y7 )

' 77 = (—o, -7 ,71'2,773)

(
(
(
Cs : (z, y, z2) = (z,2,-y)
(
(x
(o,
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a-lattice

e Obtained from B = 4 rational map initial
configuration (Houghton et al., 1997)
4 . 2
2 1
R(z) = 2"+ \/gzz +
24— 24/3i22 + 1
e Symmetries (so far):
El : (xa Y, Z) — (_xa Y, Z)

o, 1%, m%) = (o, 7t w2, —7%)
z,y,2) = (x+L/2,y+ L/2,z2+ L/2)

1

EQZ

g, 7T17 7T2a 7T3) — (70-7 -7, 77‘-27 77{3)
Figure 4: Massless a-particle

lattice

o~ o~ o~ —

Es: l',y,Z) = (—y,I,Z)

(o, 7t w2, 773) — (o, b —r?, —7r3)
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Massless Skyrme crystals

(a) a-lattice (b) FCC lattice

Figure 5: Skyrme crystals for m = 0. Top row are the isobaryon plots for level
set B = 0.01. Bottom row are isosigma plots, where red corresponds to the level
set o = 0.8 and blue to the level set o = —0.8.
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Massive Skyrme crystals

(a) a-lattice (b) FCC lattice

Figure 6: Skyrme crystals for m = 1. Top row are the isobaryon plots for level
set B = 0.01. Bottom row are isosigma plots, where red corresponds to the level
set 0 = 0.8 and blue to the level set ¢ = —0.8.
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Isospin quantization

e Collective coordinate quantization of isospin d.o.f. (Adkins et al.,
1983 .
) o(2) > @z, 1) = A(t)p(x) A (1),

Isorotations are symmetries of E so these configurations are all
energy-degenerate.

Isorotational angular velocity is w; = —i Tr(77 AT A)
e Maurer-Cartan form transforms as

. N Aw T AT, p=0
L,=¢"0up = " .
AL; A", p=1i=1,23.

T; = 2o'[7%, ] is also an su(2) current

Effective Lagrangian on restricted space of configurations is
Lest = Lyot — Mp, where 1
rot = §wiUijwj
and the isospin moment of inertia is

Uiy = _/ Tr (cQTiTJ— + C4gab[La,Ti][Lb,Tj]) vol,
=
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Massless Skyrme crystals

a-lattice

FCC lattice

E® =1.0378 EFCC =1.0378
2386 0 297.9 0 0
Us=| 0 2386 0 2979 0
0 0 0 0 2979

Table 1: Comparison of the massive (m

0) a-lattice and FCC lattice




Massive Skyrme crystals

a-lattice

FCC lattice

v 0 o T
E% =1.0631 E¥CC =1.0673
1355 0 0 1652 0 0
ve=| 0o 1355 0 v =1 o 1652 0
0 0 167.3 0 0  165.2

Table 2: Comparison of the massive (m = 1) a-lattice and FCC lattice
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Comparison of the a-lattice and the FCC lattice

([ B [ P [ AF |
0 1.0378 | 1.0378 0%

1 1.0631 | 1.0673 | 0.4%
3 1.0710 | 1.0797 | 0.8%
5 1.0715 | 1.0816 | 0.9%
10 1.0710 | 1.0824 | 1.1%

Table 3: Comparison of the a-lattice and FCC lattice for various m

e Massless FCC and a-lattice:
e Energy degenerate
e Isospin tensor shares common eigenvalue
= Related by SO(4)-isospin transformation:
0 0 0
Qﬂ_a _ ﬂ_FCC Q _ 1/\/3 71/\/6 1/\/i 0
’ 1/vV3 —1/v/6 —-1/V/2 0
0 0

. . V3 2/V6
e Massive FCC and a-lattice:
e Energy is not invariant under SO(4) action
= o-lattice is the lower energy crystal

-1
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Open problems

e What happens when we consider quantum corrections from the isospin
d.o.f.? (Adam et al., 2022)

e Crystal energy bound appears to increase with m = lower binding
energies for higher m?

e Use lots of random ICs for field and/or lattice to find other (new)
crystals, similar to that of (Gudnason & Halcrow, 2022)

e (Gudnason & Halcrow, 2022) find massive Skyrmions with multi-layer
graphene structure = stable massive graphene multi-sheets?

(a) In-phase (b) Out-of-phase

Figure 7: Massive 2-layer graphene sheets
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