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Motivation

• The Skyrme model is a nonlinear field theory of pions (Skyrme, 1961)

• Nuclei are modelled as topological solitons (Skyrmions)

• Want to understand phases, and transitions of phases, of nuclear

matter in the Skyrme model

• Ground state of nuclear matter has a crystalline structure in the

classical approximation

• Many Skyrmions look like chunks of the infinite crystal (Feist et al.,

2013)

• Two candidates proposed:

• Cubic lattice of half-Skyrmions

• α-particle lattice

• Which is the lower energy solution (classically)?

• Are the two related?
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Skyrme model

• Topological solitons: smooth, spatially localized solutions of non-linear

field theories, topologically stable against decay to vacuum.

• Skyrme field φ : (Σ, g)→ (G, h), e.g. R3/Λ→ SU(2)

• Left-invariant Maurer-Cartan form θ = φ−1dφ ∈ Ω1(G)⊗ g

• Associated 2-form Ω ∈ Ω2(G)⊗ g, Ω(X,Y ) := [θ(X), θ(Y )]

• Ad(SU(2)) invariant inner product, h(X,Y ) = 1
2
Tr(X†Y )

• Skyrme energy functional

E[φ] =

∫
Σ

{
c2g

ijh(Li, Lj) +
c4

2
giagjbh(Ωij ,Ωab) + c0V (φ)

}
volg

• V : SU(2) → R is the pion mass potential,

V (φ) = m2 Tr(1 − φ)

• Usual coupling constants c0 = c2 = 1 and c4 = 1/4

• Derrick’s scaling argument E4 = E2 + 3E0

• Skyrmions are local minima of E

• Found numerically by discretising E and applying a gradient descent

method
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Energy bound

• Pion mass dependent topological energy bound (Harland, 2014)

• Want to find the strongest lower bound attainable

• Faddeev bound: α2E2 + α4E4 ≥ 12π2α
1/2
2 α

1/2
4 |B|

• Lower bound: α0E0 + α4E4 ≥ 512
15

√
πΓ2(3/4)α

1/4
0 α

3/4
4 |B|

• Split E into two terms and use the two above bounds to find a new

topological energy bound:

E ≥ 12π2α|B|, α =
√
1− t+

2

3
√
µ
t3/4

where µ = 225π3

4096mΓ2(3/4)
(Gudnason & Halcrow, 2022)

• m = 0 (µ→∞) yields the familiar Faddeev bound E ≥ 12π2|B|
• m→∞ (µ = 0) gives the lower bound

• For all other µ the bound is stronger

• Bound maximised by dα
dt

= 0→ t = 1− µ2

2

(√
1 + 4

µ2 − 1
)

• Define
Ebound =

E

12π2α|B|
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History of Skyrme crystals

(a) Half-Skyrmions lattice (b) α-particle

• SC crystal of Skyrmions (Klebanov, 1985)

• BCC crystal of half Skyrmions (Goldhaber & Manton, 1987)

• SC crystal of half Skyrmions (Kugler & Shtrikman, 1988; Castillejo et

al., 1989)

• Building Skyrmions from the α-particle (Battye et al., 2007)

• Massless (Silva Lobo, 2010) and massive (Adam et al., 2022) phase

transition between α-particle and SC crystal of half Skyrmions

• Constructing Skyrmions from crystal chunks (Feist et al., 2013)

• Phase transitions between different crystals (Perapechka & Shnir, 2017) 6/20



History of Skyrme crystals

(a) B = 8

(b) B = 12
(c) B = 24 (d) B = 32

Figure 2: Skyrmions constructed from the α-particle

(a) Constructed from two twisted α-particles (Battye et al., 2007)

(b) Constructed from three twisted α-particles (Battye et al., 2007)

(c) Constructed from six twisted α-particles (Feist et al., 2013)

(b) Constructed from eight α-particles (Battye et al., 2007)
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Variational problem

• Skyrme crystals are maps

φ : R3/Λ→ SU(2), Λ = {n1X1 + n2X2 + n3X3 : ni ∈ Z}

• General idea (Speight, 2014): identify (R3/Λ, ḡ)←→ (R3/Z3, g) via the

diffeomorphism F : T3 → R3/Λ where T3 = R3/Z3 and

F (x) = Ax,A = [X1 X2 X3]

• Fix Skyrme field to be the map φ : T3 → SU(2)

• Metric on T3 is the pullback g = F ∗ḡ, with gij = Xi ·Xj

• Vary metric gs with g0 = F ∗ḡ ⇐⇒ vary lattice Λs with Λ0 = Λ

• Energy minimized over all variations of g ⇐⇒ optimal period lattice Λ
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Variational problem

• Let SPDn be the space of symmetric positive-definite n× n-matrices.

• For fixed φ, can consider the Skyrme energy to be a map E : SPD3 → R

• E is convex when restricted to geodesics ⇒ uniqueness of the lattice

• Simple case: Λ = LZ3, energy scales as E = LE2 +
1
L
E4 + L3E0 and

dE

dL
= 0 ⇒ L2 =

1

2

− E2

3E0
+

√(
E2

3E0

)2

+
4E4

3E0


• In general, optimal period lattice Λ:

♢ Massless pions: explicit solution
↬ Matrix square root

♢ Massive pions: numerical solution
↬ Arrested Newton flow or nonlinear conjugate gradient descent
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Matrix square root

• Massless case V (φ) = 0 reduces the problem to(
gK√
det g

)2

=
c2
c4
LK,

where, in sigma model notation,

Lij =

∫
Σ

(∂iπ · ∂jπ) volg

and

Kij = εiabεjcd
∫
Σ

{(∂aπ · ∂cπ)(∂bπ · ∂dπ)− (∂aπ · ∂dπ)(∂bπ · ∂cπ)} volg

• Matrix square root:
gK√
det g

= PD1/2P−1, D1/2 =


√
λ1 0 0

0
√
λ2 0

0 0
√
λ3


• Setting g̃ = g√

det g
yields g̃ = PD1/2P−1K−1

• Finally, using the fact that det g = 1
(det g̃)2

, we arrive at g = g̃
det g̃

.
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Numerical approach to the lattice

• Aim: solve the unconstrained optimisation problem

min
g∈SPD3

E(g)

• Accelerated 2nd order gradient descent with flow arresting

• Solve Newton’s equations of motion for a particle on SPD3 with

potential energy E(g) using 4th order Runge–Kutta:

∂ssgs|s=0 = − δE

δgs

∣∣∣∣
s=0

, g0 = g

• Restart flow if E(t+ δt) > E(t) (arresting)

• Terminate flow when δE
δgs

∣∣∣
s=0

< 10−5 everywhere
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FCC lattice

Figure 3: Massless FFC lattice

(Kugler & Shtrikman, 1988) and

(Castillejo et al., 1989)

• Obtained from Fourier series expansion initial

configuration (Castillejo et al., 1989)

σ = −c1c2c3, π1 = s1

√
1− s22

2
− s23

2
+

s22s
2
3

3

and cyclic, where ci = cos
(

2πxi

L

)
and

si = sin
(

2πxi

L

)
• Symmetries (Kugler & Shtrikman, 1989):

A1 : (x, y, z) 7→ (−x, y, z)

(σ, π1, π2, π3) 7→ (σ,−π1, π2, π3)

A2 : (x, y, z) 7→ (y, z, x)

(σ, π1, π2, π3) 7→ (σ, π2, π3, π1)

C3 : (x, y, z) 7→ (x, z,−y)

(σ, π1, π2, π3) 7→ (σ, π1, π3,−π2)

D4 : (x, y, z) 7→ (x+ L/2, y, z)

(σ, π1, π2, π3) 7→ (−σ,−π1, π2, π3)
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α-lattice

Figure 4: Massless α-particle

lattice

• Obtained from B = 4 rational map initial

configuration (Houghton et al., 1997)

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√
3iz2 + 1

• Symmetries (so far):

E1 : (x, y, z) 7→ (−x, y, z)

(σ, π1, π2, π3) 7→ (σ, π1, π2,−π3)

E2 : (x, y, z) 7→ (x+ L/2, y + L/2, z + L/2)

(σ, π1, π2, π3) 7→ (−σ,−π1,−π2,−π3)

E3 : (x, y, z) 7→ (−y, x, z)

(σ, π1, π2, π3) 7→ (σ, π1,−π2,−π3)
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Massless Skyrme crystals

(a) α-lattice (b) FCC lattice

Figure 5: Skyrme crystals for m = 0. Top row are the isobaryon plots for level

set B = 0.01. Bottom row are isosigma plots, where red corresponds to the level

set σ = 0.8 and blue to the level set σ = −0.8.
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Massive Skyrme crystals

(a) α-lattice (b) FCC lattice

Figure 6: Skyrme crystals for m = 1. Top row are the isobaryon plots for level

set B = 0.01. Bottom row are isosigma plots, where red corresponds to the level

set σ = 0.8 and blue to the level set σ = −0.8.
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Isospin quantization

• Collective coordinate quantization of isospin d.o.f. (Adkins et al.,

1983)
φ(x) 7→ φ̂(x, t) = A(t)φ(x)A†(t).

Isorotations are symmetries of E so these configurations are all

energy-degenerate.

• Isorotational angular velocity is ωj = −iTr(τ jA†Ȧ)

• Maurer-Cartan form transforms as

L̂µ = φ̂†∂µφ̂ =

AωiTiA
†, µ = 0

ALiA
†, µ = i = 1, 2, 3.

• Ti =
i
2
φ†[τ i, φ] is also an su(2) current

• Effective Lagrangian on restricted space of configurations is

Leff = Lrot −MB , where
Lrot =

1

2
ωiUijωj

and the isospin moment of inertia is

Uij = −
∫
Σ

Tr
(
c2TiTj + c4g

ab[La, Ti][Lb, Tj ]
)
volg
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Massless Skyrme crystals

α-lattice FCC lattice

Eα = 1.0378 EFCC = 1.0378

Uα =

238.6 0 0

0 238.6 0

0 0 297.9

 UFCC =

297.9 0 0

0 297.9 0

0 0 297.9


Table 1: Comparison of the massive (m = 0) α-lattice and FCC lattice
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Massive Skyrme crystals

α-lattice FCC lattice

Eα = 1.0631 EFCC = 1.0673

Uα =

135.5 0 0

0 135.5 0

0 0 167.3

 UFCC =

165.2 0 0

0 165.2 0

0 0 165.2


Table 2: Comparison of the massive (m = 1) α-lattice and FCC lattice
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Comparison of the α-lattice and the FCC lattice

m Eα EFCC ∆E

0 1.0378 1.0378 0%

1 1.0631 1.0673 0.4%

3 1.0710 1.0797 0.8%

5 1.0715 1.0816 0.9%

10 1.0710 1.0824 1.1%

Table 3: Comparison of the α-lattice and FCC lattice for various m

• Massless FCC and α-lattice:
• Energy degenerate

• Isospin tensor shares common eigenvalue

⇒ Related by SO(4)-isospin transformation:

Qπα = πFCC, Q =


0 0 0 −1

1/
√
3 −1/

√
6 1/

√
2 0

1/
√
3 −1/

√
6 −1/

√
2 0

1/
√
3 2/

√
6 0 0


• Massive FCC and α-lattice:

• Energy is not invariant under SO(4) action

⇒ α-lattice is the lower energy crystal
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Open problems

• What happens when we consider quantum corrections from the isospin

d.o.f.? (Adam et al., 2022)

• Crystal energy bound appears to increase with m ⇒ lower binding

energies for higher m?

• Use lots of random ICs for field and/or lattice to find other (new)

crystals, similar to that of (Gudnason & Halcrow, 2022)

• (Gudnason & Halcrow, 2022) find massive Skyrmions with multi-layer

graphene structure ⇒ stable massive graphene multi-sheets?

(a) In-phase (b) Out-of-phase

Figure 7: Massive 2-layer graphene sheets
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