
New Skyrme Crystals

Paul Leask1,2

Joint work with Derek Harland2 & Martin Speight2

1 p.n.leask@leeds.ac.uk
2 School of Mathematics, University of Leeds

Geometric Models of Nuclear Matter, University of Kent, July 2022



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Table of Contents

1 Motivation

2 Skyrme model

3 History of Skyrme crystals

4 Variational problem

5 Massless Skyrme crystals

6 Massive Skyrme crystals

7 Classical properties

8 Open problems

Paul Leask – New Skyrme Crystals 2/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Motivation

Paul Leask – New Skyrme Crystals 3/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Motivation

• The Skyrme model is a nonlinear field theory of pions (Skyrme, 1961)

• Nuclei are modelled as topological solitons (Skyrmions)

• Want to understand phases, and transitions of phases, of nuclear matter in the Skyrme model

• Ground state of nuclear matter has a crystalline structure in the classical approximation

• Many Skyrmions look like chunks of the infinite crystal (Feist et al., 2013)
• Two candidates proposed:

• Cubic lattice of half-Skyrmions
• α-particle lattice

• Which is the lower energy solution (classically)?

• Are the two related?

• Are there other new solutions?
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Skyrme model

• Topological solitons: smooth, spatially localized solutions of non-linear field theories,
topologically stable against decay to vacuum.

• Skyrme field φ : (Σ, g)→ (G, h), e.g. R3/Λ→ SU(2)
• Left-invariant Maurer-Cartan form θ = φ−1dφ ∈ Ω1(G)⊗ g
• Associated 2-form Ω ∈ Ω2(G)⊗ g, Ω(X,Y ) := [θ(X), θ(Y )]
• Ad(SU(2)) invariant inner product, h(X,Y ) = 1

2
Tr(X†Y )

• Skyrme energy functional

E[φ] =

∫
Σ

{
c2g

ijh(Li, Lj) +
c4

2
giagjbh(Ωij ,Ωab) + c0V (φ)

}
volg

• V : SU(2) → R is the pion mass potential,

V (φ) = m2 Tr(1 − φ)

• Usual coupling constants c0 = c2 = 1 and c4 = 1/4
• Derrick’s scaling argument E4 = E2 + 3E0
• Topological energy bound E ≥ 12π2α|B| (Harland, 2014)

• Skyrmions are local minima of E

• Found numerically by discretising E and applying a gradient descent method
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(a) Half-Skyrmions lattice (b) α-particle

• SC crystal of Skyrmions (Klebanov, 1985)
• BCC crystal of half Skyrmions (Goldhaber & Manton, 1987)
• SC crystal of half Skyrmions (Kugler & Shtrikman, 1988; Castillejo et al., 1989)
• Building Skyrmions from the α-particle (Battye et al., 2007)
• Massless (Silva Lobo, 2010) and massive (Adam et al., 2022) phase transition between α-particle

and SC crystal of half Skyrmions
• Constructing Skyrmions from crystal chunks (Feist et al., 2013)
• Phase transitions between different crystals (Perapechka & Shnir, 2017)

Paul Leask – New Skyrme Crystals 8/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

History of Skyrme crystals

(a) B = 8

(b) B = 12
(c) B = 24 (d) B = 32

Figure: Skyrmions constructed from the α-particle

(a) Constructed from two twisted α-particles (Battye et al., 2007)

(b) Constructed from three twisted α-particles (Battye et al., 2007)

(c) Constructed from six twisted α-particles (Feist et al., 2013)

(b) Constructed from eight α-particles (Battye et al., 2007)
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Variational problem

• Warmup problem: Baby Skyrmion crystals (Leask, 2022)

• Skyrme crystals are maps

φ : R3/Λ→ SU(2), Λ = {n1X1 + n2X2 + n3X3 : ni ∈ Z}

• General idea (Speight, 2014): identify (R3/Λ, ḡ)←→ (R3/Z3, g) via the diffeomorphism
F : T3 → R3/Λ where T3 = R3/Z3 and F (x) = Ax,A = [X1 X2 X3]

• Fix Skyrme field to be the map φ : T3 → SU(2)

• Metric on T3 is the pullback g = F ∗ḡ, with gij = Xi ·Xj

• Vary metric gs with g0 = F ∗ḡ ⇐⇒ vary lattice Λs with Λ0 = Λ

• Energy minimized over all variations of g ⇐⇒ optimal period lattice Λ
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Variational problem

• Let SPDn be the space of symmetric positive-definite n× n-matrices.

• For fixed φ, can consider the Skyrme energy to be a map E : SPD3 → R

• E is convex when restricted to geodesics ⇒ uniqueness of the lattice

• Simple case: Λ = LZ3, energy scales as E = LE2 +
1
L
E4 + L3E0 and

dE

dL
= 0 ⇒ L2 =

1

2

− E2

3E0
+

√(
E2

3E0

)2

+
4E4

3E0


• In general, optimal period lattice Λ:

♢ Massless pions: explicit solution
↬ Matrix square root

♢ Massive pions: numerical solution
↬ Arrested Newton flow or nonlinear conjugate gradient descent
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Matrix square root

• Massless case V (φ) = 0 reduces the problem to(
gK√
det g

)2

=
c2
c4
LK,

where, in sigma model notation,

Lij =

∫
Σ

(∂iπ · ∂jπ) volg

and

Kij = εiabεjcd
∫
Σ

{(∂aπ · ∂cπ)(∂bπ · ∂dπ)− (∂aπ · ∂dπ)(∂bπ · ∂cπ)} volg

• Matrix square root:
gK√
det g

= PD1/2P−1, D1/2 =

√λ1 0 0
0

√
λ2 0

0 0
√
λ3


• Setting g̃ = g√

det g
yields g̃ = PD1/2P−1K−1

• Finally, using the fact that det g = 1
(det g̃)2

, we arrive at g = g̃
det g̃

.
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Numerical approach to the lattice

• Aim: solve the unconstrained optimisation problem

min
g∈SPD3

E(g)

• Accelerated 2nd order gradient descent with flow arresting

• Solve Newton’s equations of motion for a particle on SPD3 with potential energy E(g) using 4th
order Runge–Kutta:

∂ssgs|s=0 = − δE

δgs

∣∣∣∣
s=0

, g0 = g

• Restart flow if E(t+ δt) > E(t) (arresting)

• Terminate flow when δE
δgs

∣∣∣
s=0

< 10−5 everywhere
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1/2-lattice (FCC lattice)

Figure: Massless FFC lattice (Kugler & Shtrikman,
1988) and (Castillejo et al., 1989)

• Obtained from Fourier series expansion initial configuration
(Castillejo et al., 1989)

σ = −c1c2c3, π1 = s1

√
1− s22

2
− s23

2
+

s22s
2
3

3

and cyclic, where ci = cos
(

2πxi

L

)
and si = sin

(
2πxi

L

)
• Symmetries (Kugler & Shtrikman, 1989):

A1 : (x, y, z) 7→ (−x, y, z)

(σ, π1, π2, π3) 7→ (σ,−π1, π2, π3)

A2 : (x, y, z) 7→ (y, z, x)

(σ, π1, π2, π3) 7→ (σ, π2, π3, π1)

C3 : (x, y, z) 7→ (x, z,−y)

(σ, π1, π2, π3) 7→ (σ, π1, π3,−π2)

D4 : (x, y, z) 7→ (x+ L/2, y, z)

(σ, π1, π2, π3) 7→ (−σ,−π1, π2, π3)
Paul Leask – New Skyrme Crystals 16/33
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New crystals from old

• Define a potential V (Q) := E[Qπ1/2] for Q ∈ SO(4)

• Isospin symmetry group of the 1/2-lattice is

Γ =



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 ,


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




• Then V (QG) = V (Q) ∀G ∈ Γ and V (SQ) = V (Q) ∀S ∈ SO(3)

• So the potential is a map V : SO(4)/ SO(3) ∼= S3 → R

• N/S-pole on S3 corresponds to the 1/2-lattice

• Cubic symmetry group acts invariantly on equatorial S2

• Intersection of S2 with vertices, edge centres & face centres of the cube projected radially onto
S2 are critical points of V (principle of symmetric criticality)

• Three other Skyrme crystals should exist, one of which is the α-lattice

⇒ Two entirely new Skyrme crystals
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New crystals from old

• Let the map SO(4)/SO(3) ∼= S3 be given explicitly by

Q 7→ QT


1
0
0
0

 = v1, QT =

 ↑ ↑ ↑ ↑
v1 v2 v3 v4

↓ ↓ ↓ ↓



• Let {v1,u2,u3,u4} be a set of linearly independent vectors in R4.

• Use Gram-Schmidt to obtain an orthonormal basis {v1,v2,v3,v4} for R4

• Can explicitly construct a Q such that π = Qπ1/2

⇒ The three additional crystals can easily be obtained
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4-lattice (α-lattice)

Figure: Massless α-particle lattice

• Obtained from the B = 4 rational map initial configuration
(Houghton et al., 1997)

R(z) =
z4 + 2

√
3iz2 + 1

z4 − 2
√
3iz2 + 1

• Already shown the α-lattice and FCC lattice are related by an
SO(4)-isospin transformation (Leask (SIG X Talk), 2022):

Qπ4 = π1/2, Q =


0 0 0 −1

1/
√
3 −1/

√
6 1/

√
2 0

1/
√
3 −1/

√
6 −1/

√
2 0

1/
√
3 2/

√
6 0 0


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4-lattice (α-lattice)

x

y

z

(− 1√
3
, 1√

3
, 1√

3
)

O

Figure: Cube vertices projected radially onto S2

• Related to the FCC lattice by SO(4)-isospin transformation:

π4 = Qπ1/2, Q =


0 −1/

√
3 1/

√
3 1/

√
3

0 1/
√
6 −1/

√
6 2/

√
6

0 −1/
√
2 −1/

√
2 0

−1 0 0 0


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(New) 1-lattice

x

y

z

(0, 0, 1)

O

Figure: Cube face centres projected radially onto
S2

• Related to the FCC lattice by SO(4)-isospin transformation:

π1 = Qπ1/2, Q =


0 0 0 1

1/
√
3 1/

√
3 1/

√
3 0

−1/
√
6 2/

√
6 −1/

√
6 0

1/
√
2 0 −1/

√
2 0


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(New) 2-lattice

x

y

z

(0, 1√
2
, 1√

2
)

O

Figure: Cube edge centres projected radially onto
S2

• Related to the FCC lattice by SO(4)-isospin transformation:

π2 = Qπ1/2, Q =


0 0 1/

√
2 1/

√
2

1 0 0 0

0 2/
√
6 −1/

√
6 1/

√
6

0 1/
√
3 1/

√
3 −1/

√
3


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Massless Skyrme crystals

(a) 1/2-lattice (b) 4-lattice (c) 1-lattice (d) 2-lattice

Figure: Skyrme crystals for m = 0. Top row is baryon density. Bottom row is sigma plots, where σ = 0.9 and σ = −0.9.
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Massive Skyrme crystals

(a) 1/2-lattice (b) 4-lattice (c) 1-lattice (d) 2-lattice

Figure: Skyrme crystals for m = 1. Top row is baryon density. Bottom row is sigma plots, where σ = 0.9 and σ = −0.9.
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Isospin moment of inertia tensor

• Collective coordinate approach to isospin d.o.f. (Adkins et al., 1983)

φ(x) 7→ φ̂(x, t) = A(t)φ(x)A†(t).

Isorotations are symmetries of E so these configurations are all energy-degenerate.
• Isorotational angular velocity is ωj = −iTr(τ jA†Ȧ)
• Maurer-Cartan form transforms as

L̂µ = φ̂†∂µφ̂ =

{
AωiTiA

†, µ = 0

ALiA
†, µ = i = 1, 2, 3.

• Ti =
i
2
φ†[τ i, φ] is also an su(2) current

• Effective Lagrangian on restricted space of configurations is Leff = Lrot −MB , where

Lrot =
1

2
ωiUijωj

and the isospin moment of inertia is

Uij = −
∫
Σ

Tr
(
c2TiTj + c4g

ab[La, Ti][Lb, Tj ]
)
volg

Paul Leask – New Skyrme Crystals 25/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Classical properties

Paul Leask – New Skyrme Crystals 26/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Massless Skyrme crystals

4-lattice 1/2-lattice

E4 = 1.0378 E1/2 = 1.0378

U4 =

238.6 0 0
0 238.6 0
0 0 297.9

 U1/2 =

297.9 0 0
0 297.9 0
0 0 297.9


Table: Comparison of the massless (m = 0) 4-lattice and 1/2-lattice

Paul Leask – New Skyrme Crystals 27/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

New massless Skyrme crystals

1-lattice 2-lattice

E1 = 1.0378 E2 = 1.0378

U1 =

238.6 0 0
0 238.6 0
0 0 297.9

 U2 =

238.6 0 0
0 238.6 0
0 0 297.9


Table: Comparison of the massless (m = 0) 1-lattice and 2-lattice
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Massive Skyrme crystals

4-lattice 1/2-lattice

E4 = 1.0631 E1/2 = 1.0673

U4 =

135.5 0 0
0 135.5 0
0 0 167.3

 U1/2 =

165.2 0 0
0 165.2 0
0 0 165.2


Table: Comparison of the massive (m = 1) 4-lattice and 1/2-lattice
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New massive Skyrme crystals

1-lattice 2-lattice

E1 = 1.0629 E2 = 1.0631

U1 =

166.8 0 0
0 135.8 0
0 0 135.8

 U2 =

167.2 0 0
0 135.7 0
0 0 135.6


Table: Comparison of the massive (m = 1) 1-lattice and 2-lattice

Paul Leask – New Skyrme Crystals 30/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Comparison of the four crystals

m E4 E1/2 E1 E2

0 1.0378 1.0378 1.0378 1.0378

1 1.0631 1.0673 1.0629 1.0631

3 1.0710 1.0797 1.0703 1.0708

5 1.0715 1.0816 1.0707 1.0713

10 1.0710 1.0824 1.0703 1.0707

Table: Comparison of the four crystals for various m

• Massless crystals:
• Energy degenerate
• Isospin tensors share common eigenvalue(s)
• All related to one another by SO(4)-isospin transformations

• Massive crystals:
• Energy is not invariant under SO(4) action

⇒ New lower energy crystal – the 1-lattice

Paul Leask – New Skyrme Crystals 31/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Open problems

Paul Leask – New Skyrme Crystals 32/33



New
Skyrme
Crystals

Paul Leask

Motivation

Skyrme
model

History of
Skyrme
crystals

Variational
problem

Massless
Skyrme
crystals

Massive
Skyrme
crystals

Classical
properties

Open
problems

Open problems

• What happens when we consider quantum corrections from the isospin d.o.f. for these two new
crystals? (Adam et al., 2022) investigated this for the 1/2-lattice and the 4-lattice.

• How do the energies of the new 1-lattice and 2-lattice compare to the 4-lattice at high and low
density (e.g. produce the E(V ) curve)?

• New lattices are not cubic, do they scale with the pion mass?

• How can we construct Skyrmions from these new lattices?
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