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Motivation

® The Skyrme model is a nonlinear field theory of pions (Skyrme, 1961)

® Nuclei are modelled as topological solitons (Skyrmions)

® Want to understand phases, and transitions of phases, of nuclear matter in the Skyrme model
® Ground state of nuclear matter has a crystalline structure in the classical approximation

® Many Skyrmions look like chunks of the infinite crystal (Feist et al., 2013)
® Two candidates proposed:

® Cubic lattice of half-Skyrmions
® -particle lattice

® Which is the lower energy solution (classically)?
® Are the two related?

® Are there other new solutions?
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Skyrme model

® Topological solitons: smooth, spatially localized solutions of non-linear field theories,
topologically stable against decay to vacuum.
e Skyrme field ¢ : (Z,9) — (G, h), e.g. R*/A — SU(2)
® |eft-invariant Maurer-Cartan form 6 = o~ 1dp € Q'(G)® g
® Associated 2-form Q € Q2(G) ® g, Q(X,Y) := [0(X),0(Y)]
® Ad(SU(2)) invariant inner product, h(X,Y) = %Tr(XTY)
® Skyrme energy functional

o ca i
Elp] = / {029”’1(%,%‘) + ggngbh(gijaﬂab) + COV(‘P)} volg
p)
® V :SU(2) — R is the pion mass potential,
V(p) =m?Tr(1 - ¢)

® Usual coupling constants cop =c2 =1 and ¢y =1/4
® Derrick’s scaling argument E4 = Fo + 3Eg
® Topological energy bound E > 1272«|B| (Harland, 2014)

® Skyrmions are local minima of E

® Found numerically by discretising £ and applying a gradient descent method
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History of Skyrme crystals

y 0 o

(a) Half-Skyrmions lattice (b) ce-particle

SC crystal of Skyrmions (Klebanov, 1985)

BCC crystal of half Skyrmions (Goldhaber & Manton, 1987)

SC crystal of half Skyrmions (Kugler & Shtrikman, 1988; Castillejo et al., 1989)

Building Skyrmions from the a-particle (Battye et al., 2007)

Massless (Silva Lobo, 2010) and massive (Adam et al., 2022) phase transition between a-particle
and SC crystal of half Skyrmions

Constructing Skyrmions from crystal chunks (Feist et al., 2013)

Phase transitions between different crystals (Perapechka & Shnir, 2017)
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Figure: Skyrmions constructed from the a-particle

(a) Constructed from two twisted a-particles (Battye et al., 2007) C, y
(b) Constructed from three twisted a-particles (Battye et al., 2007) i

(c) Constructed from six twisted a-particles (Feist et al., 2013) prbiens
(b) Constructed from eight a-particles (Battye et al., 2007)
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Variational problem

New
Skyrme
Crystals

Paul Leask
® Warmup problem: Baby Skyrmion crystals (Leask, 2022) y
Viof tion
® Skyrme crystals are maps

[Tl R3/A—>SU(2), A= {n1X1 + noXso +n3Xs3 1 n; GZ}

General idea (Speight, 2014): identify (R3/A,§) “— (Rg/Zs,g) via the diffeomorphism rRE—
F:T% = R%*/A where T = R*/Z® and F(x) = Ax, A = [X; X2 X3] ELedie

Fix Skyrme field to be the map ¢ : T®> — SU(2) me
Metric on T2 is the pullback g = F*g, with g;; = X; - X
® Vary metric gs with go = F*g <= vary lattice As; with Ag = A

® Energy minimized over all variations of g <= optimal period lattice A °!

problems
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Variational problem

New
Skyrme
Crystals

Let SPD,, be the space of symmetric positive-definite n X n-matrices. Paul Leask

For fixed ¢, can consider the Skyrme energy to be a map £ : SPD3 — R

Motivation

® F is convex when restricted to geodesics = uniqueness of the lattice

® Simple case: A = LZ®, energy scales as E = LE> + + E4 + L*Ep and
dE 2 1 EQ E2 2 4E4 Variational
R — 0 = L — [ —_— e roblem
L 2 | " 3E, (3E0) 3Eo -

[ ]

In general, optimal period lattice A:
& Massless pions: explicit solution
% Matrix square root
{ Massive pions: numerical solution properties
9 Arrested Newton flow or nonlinear conjugate gradient descent Open

problems
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Matrix square root

® Massless case V(¢) = 0 reduces the problem to New

Skyrme
2 Crystals
( gk ) _ C—QLIC Paul Leask
- ’
RV4 C.

det g 4 Motivation

where, in sigma model notation, s

T

Lij = / (&,ﬂ' . 8]-7r) VOlg Hm

z c

and Variational
problem

K7 = Ei“bstd/ {(Oam - Bem)(Op7 - Oa) — (Oam - Dgm)(Op7 - Oemr) } vOlg
)

® Matrix square root:
VA 0 0

gk :PD1/2P_1, DY — 01 N 0 crystals

Vdet g 0 0 Now .

problems

® Setting § = L yields j = PDY2p~iic—t

® Finally, using the fact that det g = 2. we arrive at g = %,

1
(det g et g
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Numerical approach to the lattice

® Aim: solve the unconstrained optimisation problem

280, P0)

® Accelerated 2nd order gradient descent with flow arresting

® Solve Newton's equations of motion for a particle on SPD3 with potential energy E(g) using 4th
order Runge—Kutta:

oE
assgs s=0 — . ) go=4g
| =0 599 s=0
® Restart flow if E(t + dt) > E(t) (arresting)
® Terminate flow when (?TE < 107" everywhere
s ls=0
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1/2-lattice (FCC lattice)

New

® Obtained from Fourier series expansion initial configuration Skyrme
. . Crystals
(Castillejo et al., 1989)
2 2 2 2 Paul Leask
0= —cieacs. wl—s _ % _ 53 5%
— Teets, -t 2 2 3 Motivation
Skyrm
and cyclic, where ¢; = cos (%Tz) and s; = sin (%Tz) "
H f
N ® Symmetries (Kugler & Shtrikman, 1989): oo
Variational
Al T ya ) (—x,y,z) i
3 1 2 3 Massless
ot 7’ ,70) = (o, —7 w7, 7)) Siyrme
crystals

Ay xy, z) = (y, 2, )
o, 7,7, w) = (0,7, 7,7t

(
(
(
( e
Cs:(z, y, z) = (2,2, —y)
(
(
(

Figure: Massless FFC lattice (Kugler & Shtrikman,

FF ot 72, 71) e (0,1, 72, —77)
1988) and (Castillejo et al., 1989) ) ( L/2 )
x yv T+ Y,z

o, m, 7r3) — (—o,—m vt a?)

Dy :
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New crystals from old Q

® Define a potential V(Q) := E[Qm 5] for Q € SO(4) Sgrme

Crystals

® |sospin symmetry group of the 1/2-lattice is Paul Leask

10 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 Motivation
r— 0 -1 0 O 0 0 1 0 01 0 O 0 -1 0 O St
o o 0 1 0f’t0O O O 1’10 O O 1)’ O 0 1 0 »
0 0 0 1 01 0 0 00 -1 0 0 0 0 1 Skyrm
Variational
® Then V(QG) =V(Q)VG €T and V(SQ) =V(Q) VS € SO(3) preven
® So the potential is a map V : SO(4)/SO(3) = S* — R Sn

crystals

® N/S-pole on S® corresponds to the 1/2-lattice "
® Cubic symmetry group acts invariantly on equatorial S crystals

® Intersection of S? with vertices, edge centres & face centres of the cube projected radially onto —
S? are critical points of V' (principle of symmetric criticality)

® Three other Skyrme crystals should exist, one of which is the a-lattice

= Two entirely new Skyrme crystals
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New

=

crystals from old

Let the map SO(4)/SO(3) = S* be given explicitly by
1
o . L S N
Q@ || =V @ =(vi v2 v vu
0 L+l

Let {v1,u2,us,us} be a set of linearly independent vectors in R%.
Use Gram-Schmidt to obtain an orthonormal basis {v1, vz, v3,v4} for R*
Can explicitly construct a @ such that 7 = Qmy /2

The three additional crystals can easily be obtained
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4-lattice (a-lattice) Q

New
Skyrme
Crystals

® Obtained from the B = 4 rational map initial configuration
(Houghton et al., 1997) Paul Leask
Mo tion

24 ov3iz2 +1

4 s R(z) =
(2) 24— 924/3i22 + 1

’ ® Already shown the a-lattice and FCC lattice are related by an [s5
2 N )\ SO(4)-isospin transformation (Leask (SIG X Talk), 2022): ‘
1 . 0 O O —1 Massless

‘ O oo |V “UVE V0| B

TR RT3 16 —1/V2 0

4 1/vV3  2/V6 0 0

2 al

Figure: Massless a-particle lattice ""’;"””‘;
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4-lattice (a-lattice)

Figure: Cube vertices projected radially onto S?
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0
T4 =Qmie, Q= (g 1/vV6  —1/v6 2/V6
1) 1

New

® Related to the FCC lattice by SO(4)-isospin transformation: Skyrme

Crystals

,1/\/§ 1/\/§ 1/\/§ Paul Leask
—1/vV/2 —1/V/2 0 e
0 0 0
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(New) 1-lattice

New
® Related to the FCC lattice by SO(4)-isospin transformation: Skyrme

Crystals

Paul Leask

0 0 0

_ Vs B s
mERmz Q= 16 2V ~1/v6
1/v2 0 —-1/v2

Motivation

O O O =

Massless
Skyrme
crystals

Fizgure: Cube face centres projected radially onto
S
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(New) 2-lattice

New

® Related to the FCC lattice by SO(4)-isospin transformation: Skyrme

Crystals

O 0 1/\/5 1/\/5 Paul Leask

B 1 0 0 0 erraren
7T2—Q7l'1/2, Q= 0 2/\/5 —1/\/6 1/\/5
0 1/v/3 1/V/3 —1/V3

Massless
Skyrme
crystals

Fizgure: Cube edge centres projected radially onto
S
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Massless Skyrme crystals
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(a) 1/2-lattice (b) 4-lattice (c) 1-lattice (d) 2-lattice

Figure: Skyrme crystals for m = 0. Top row is baryon density. Bottom row is sigma plots, where 0 = 0.9 and o = —0.9.
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Massive Skyrme crystals
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Massive Skyrme crystals
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(a) 1/2-lattice (b) 4-lattice (c) 1-lattice (d) 2-lattice

Figure: Skyrme crystals for m = 1. Top row is baryon density. Bottom row is sigma plots, where o = 0.9 and 0 = —0.9.
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Isospin moment of inertia tensor

New
Skyrme
Crystals

L»D(l') — @(xvt) = A(t)go(x)AT(t). Paul Leask

Isorotations are symmetries of F so these configurations are all energy-degenerate. Ve

® Collective coordinate approach to isospin d.o.f. (Adkins et al., 1983)

Isorotational angular velocity is w; = —i Tr(77 ATA) Skyrr

Maurer-Cartan form transforms as

AwiTiAT /,L:O -
Ly =¢'0.p = ’
nT oy {ALiAT, p=1i=123. N——

® T; = Lol[r', 4] is also an su(2) current

Effective Lagrangian on restricted space of configurations is Leg = Lyot — MpB, where

Massive
Skyrme

1
— stals
Lrot = §WiUijo SvaEl

and the isospin moment of inertia is

Uij = _/ Tr (czTiTj + cag®|[La, Ti}[Lb,TjD volg
>
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Massless Skyrme crystals

4-lattice

1/2-lattice

Yy ) z y 0 o x
E* =1.0378 EY? =1.0378
2386 0 0 2979 0 0
Ut = 0 238.6 0 U2 = 0 297.9 0
0 0 2979 0 0 2979

Table: Comparison of the massless (m = 0) 4-lattice and 1/2-lattice
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New massless Skyrme crystals

1-lattice

2-lattice

y 0 o - y 0 o E
ET=1.0378 E?=1.0378
2386 0 0 2386 0 0
Ut = 0 238.6 0 U? = 0 238.6 0
0 0 2979 0 0 2979

Table: Comparison of the massless (m = 0) 1-lattice and 2-lattice
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Massive Skyrme crystals

4-lattice 1/2-lattice SLV;»’L
Crystals
Paul Leask
M tion
Skyr
H
Skyr
v
pr
Shor
B y 0 o " [
E* = 1.0631 E'? =1.0673
1355 0 O 1652 O O Classica'l
4 1/2 properties
U* = 0 135.5 0 U/~ = 0 165.2 0 o
0 0 167.3 0 0 165.2 problems

Table: Comparison of the massive (m = 1) 4-lattice and 1/2-lattice
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New massive Skyrme crystals

1-lattice

2-lattice

v 0 0 x v 0 o x
ET=1.0629 E? =1.0631
166.8 0 0 1672 0 0
Ul = 0 1358 0 U? = 0 1357 0
0 0 1358 0 0 135.6

Table: Comparison of the massive (m = 1) 1-lattice and 2-lattice
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Comparison of the four crystals

New
Skyrme
‘ m H E4 El 2 El E2 Crystals
Paul Leask
0 1.0378 | 1.0378 | 1.0378 | 1.0378
1 || 1.0631 | 1.0673 | 1.0629 | 1.0631 Hotivation
3 1.0710 | 1.0797 | 1.0703 | 1.0708 5
5 1.0715 | 1.0816 | 1.0707 | 1.0713
10 || 1.0710 | 1.0824 | 1.0703 | 1.0707
Table: Comparison of the four crystals for various m - ‘
Ma:
® Massless crystals:
® Energy degenerate i
® |sospin tensors share common eigenvalue(s) {HiE
® All related to one another by SO(4)-isospin transformations p——
properties

® Massive crystals:
Open

® Energy is not invariant under SO(4) action e
= New lower energy crystal — the 1-lattice
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Open problems

® \What happens when we consider quantum corrections from the isospin d.o.f. for these two new
crystals? (Adam et al., 2022) investigated this for the 1/2-lattice and the 4-lattice.

® How do the energies of the new 1-lattice and 2-lattice compare to the 4-lattice at high and low
density (e.g. produce the E(V) curve)?

® New lattices are not cubic, do they scale with the pion mass?

® How can we construct Skyrmions from these new lattices?
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