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Motivation

o The (3 4 1)-dimensional Skyrme model is a nonlinear field theory
of pions.

e Nuclei are modelled as topological solitons (Skyrmions).
e Many Skyrmions look like chunks of the infinite crystal.

o Ultimately, we want to produce correct binding energies for
quantised Skyrmions.

o The baby Skyrme model is mainly a (2 4+ 1)-dimensional analogue
of the Skyrme model.

o It does however arise in condensed matter physics in
ferromagnetic quantum hall systems.
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Baby Skyrme model

e The general baby Skyrme model consists of a single scalar field
¢ : ¥ — 5% where (3, g) is a Riemannian manifold, and (52, h, w)
is the 2-sphere with area 2-form w and h is the induced metric
from embedding S? in R3.

o We are interested in baby Skyrmions on:

o the plane, ¥ = R?;
o the cylinder, ¥ = §' x R; and
o the lattice, & = R%/A.
e The static energy functional on ¥ is given by

E[¢] = /E {;|d¢|2 + %|¢*W|2 + V[qb]} volg,

where we consider the standard O(2) potential
Vig] = m?(1 — ¢3) with m? = 0.1.
e The baby Skyrme map has an associated degree

1
B:——/¢*weZ.
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Baby Skyrmions on R?

o Physical space is ¥ = R? with local coordinates = = (21, 72).

o Finite energy solutions require us to impose the boundary
conditions lim|4| o0 ¢(7) = Poo = (0,0, 1) such that V]ps] = 0.

e Chains solutions were proposed as a good candidate for the
global minima for low charges (Foster, 2010).

o Ring solutions were found to be a better candidate for the global
minima for charges B > B, € Z, where B, = 15 for m? = 0.1
(Winyard, 2016).

o We show that crystal chunks become the lower energy solution
for B > B, for some B, € Z.
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Baby Skyrmion chain on R?
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Figure 1: Energy density plot of the B = 9 chain solution for m? = 0.1. 6/19



Baby Skyrmion ring on R?
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Figure 2: Energy density plot of the B = 30 ring solution for m? = 0.1. 7/19



Lattice baby Skyrmions

 The physical space of interest is the 2-torus ¥ = R?/A, where A
is the set of all 2-dimensional period lattices

2
A= {Zni(aXi) | ni€Z,a € R*}

i=1
and {X1, Xo} is a basis for R?.

o Crystallographic restriction theorem: 5 lattice types in
2-dimensions. Fundamental unit cell is a certain type of a
parallelogram.

o To find the optimal crystalline structure, we minimize the static
energy over all period lattices.

« Equivalently, we fix our domain of ¢ to be R?/Z? and identify
every other torus R?/A with R?/Z2, but with a nonstandard
Riemannian metric g. This metric g is the pullback of the usual
metric g on R?/A via the diffeomorphism R?/Z% — R2/A. As we

vary A then the metric g varies (Speight, 2014) .
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Lattice baby Skyrmions

o Let F:R%/Z? — R%/A be a diffeomorphism with F' € GL(2,R)
and (71, 12) be local coordinates on T2 = R%/Z2.

o Identify GL(2,R) = SL(2,R) x R* and let A = [X; X5] € SL(2,R)
and o € R*, such that F = a/A.

o Now identify the Skyrme field as a map ¢ : T? — §2.

o Metric on T? is the pullback g = F*g, and the volume form is
volg = \/(mdl’l Adzy = a?dz A das.

o The static energy functional on T? is

1

E=3 /T {X2(019)% — 2(Xz - X1) (016 - D20) + X7)(020)%} dy dap

1
+—2/ (81¢x82¢)2dx1dx2+a2/ V[¢] dz; dzs.
T2

2 T2
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Lattice baby Skyrmions

e Taking the variation of the static energy functional with respect
to a,
oF 2
9F _ _i/ (616 X D2)* day das + 2a/ Vi¢] d das,
80[ 0[3 T2 T2

yields the relation

o2 = %2 Jr2 (010 % 92¢)” day Ay _ B4
fTZ V[¢] dCCl dCCQ E() '

o Finding the period lattice parameters Xi, Xo which minimize the
Dirichlet energy FEs is a constrained quadratic optimization
problem with the nonlinear constraint det([X; Xs]) = 1.

e For notational convenience, let us write

gij = / (az¢ . aj(b) del dCEQ.
T2
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Lattice baby Skyrmions

e Then the Dirichlet energy E> can be expressed in the form
1

FEy = imTQa:,

where © = [Xl
X

] is a 4-vector and @ is the 4 x 4-symmetric

matrix

0 Eaa 0 —&12
0 —(912 0 511

Q=

o Including the Lagrange term ~(det([X; X2]) — 1) reduces the
problem to an eigenvalue problem Bx = ~a, where

0 &2 0 —=&n
&2 0 &n 0
0 & 0 =12
—E99 0 &9 0 11/19
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Hexagonal crystalline structure

e The optimal lattice is found to be an equianharmonic lattice with
a hexagonal crystalline structure.

e Unit cell has sides of equal length Ly = 9.65 and angle § = %’r

o The infinite crystal has energy Ecrystal = 1.4543, which is lower
than the infinite chain energy Ecpain = 1.4548.

o The energies mentioned above, and throughout, are normalised
by the Bogomolny bound, i.e. £ := E/(47B).
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Figure 3: Hexagonal crystalline structure of the infinite crystal.
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Crystal slab model on R x S*

o Physical space is the cylinder ¥ = R x S*.

e This corresponds to a Dirichlet boundary condition in the
Tp-direction, lim|z,| oo = Poo, and a periodic boundary condition
in the z-direction, ¢(z1,22) = ¢(x1 + my L, 22), where ny € Z.

o Staggered charge-2 baby Skyrmions are layered on an infinite
cylinder of width L = Ly to estimate the surface energy per unit
length.

e Applying a least squares fit of the form

Ly
Eslab = gcrystal +2 9 gsurfa
n

where E,¢ 18 the surface energy per unit length and number of
layers n, we find that Eguf = 6.58 x 1074,
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Crystal slab layering

Figure 4: n =5 layer crystal slab solution on infinite cylinder of width Lg. |, /19



Crystal chunk approximation

o Isoperimetric inequality in R? is L? > 47 A, with equality iff the
boundary curve is a cirle.

o Minimal crystal surface energy = L? = 47 A (crystal disks).

o Using this assumption, we can express chunks of the crystal in

the form
T

gchunk = gcrystal + QSSU.I‘f BipBy
where pp is the charge per unit area.

e Can empirically compare chains, rings and crystal chunks using

ring and chain approximations.

e Crystal chunk solutions become global minima for approximately
B > 877.
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Rings, chains and chunks
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Figure 5: Comparison of ring, chain and crystal chunk approximations. 4 /19



B = 182 crystal chunk
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182 crystal chunk solution.

Figure 6: B
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B = 2054 crystal chunk solution.

Figure 7



Summary

¢ Optimal crystal was thought to be a square lattice of half baby
Skyrmions.

e Optimal crystalline structure is actually hexagonal.

e Optimal crystal structure in 3D is thought to be cube of half
Skyrmions (Kugler & Shtrikman, 1988), see Fig. 8.

o Generalising this method, could a hexagonal structure prevail?

Figure 8: B = 32 crystal chunk solution in the Skyrme model. 19/19
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