

# The surface energy of a baby Skyrme crystal

---

Paul Leask<sup>1</sup>

mmpnl@leeds.ac.uk

Young Researchers in Mathematics, University of Bristol, June 2021

<sup>1</sup> University of Leeds

UNIVERSITY OF LEEDS



UK Research  
and Innovation



# Outline

---

Motivation

Baby Skyrme model

Baby Skyrmions on  $\mathbb{R}^2$

Lattice baby Skyrmions

Crystal slab model on  $\mathbb{R} \times S^1$

Crystal chunk approximation

Summary

## Motivation

---

- The  $(3 + 1)$ -dimensional Skyrme model is a nonlinear field theory of pions.
- Nuclei are modelled as topological solitons (Skyrmions).
- Many Skyrmions look like chunks of the infinite crystal.
- Ultimately, we want to produce correct binding energies for quantised Skyrmions.
- The baby Skyrme model is mainly a  $(2 + 1)$ -dimensional analogue of the Skyrme model.
- It does however arise in condensed matter physics in ferromagnetic quantum hall systems.

# Baby Skyrme model

---

- The general baby Skyrme model consists of a single scalar field  $\phi : \Sigma \rightarrow S^2$  where  $(\Sigma, g)$  is a Riemannian manifold, and  $(S^2, h, \omega)$  is the 2-sphere with area 2-form  $\omega$  and  $h$  is the induced metric from embedding  $S^2$  in  $\mathbb{R}^3$ .
- We are interested in baby Skyrmions on:
  - the plane,  $\Sigma = \mathbb{R}^2$ ;
  - the cylinder,  $\Sigma = S^1 \times \mathbb{R}$ ; and
  - the lattice,  $\Sigma = \mathbb{R}^2/\Lambda$ .
- The static energy functional on  $\Sigma$  is given by

$$E[\phi] = \int_{\Sigma} \left\{ \frac{1}{2} |\mathrm{d}\phi|^2 + \frac{1}{2} |\phi^* \omega|^2 + V[\phi] \right\} \mathrm{vol}_g,$$

where we consider the standard  $O(2)$  potential

$$V[\phi] = m^2(1 - \phi_3)$$
 with  $m^2 = 0.1$ .

- The baby Skyrme map has an associated degree

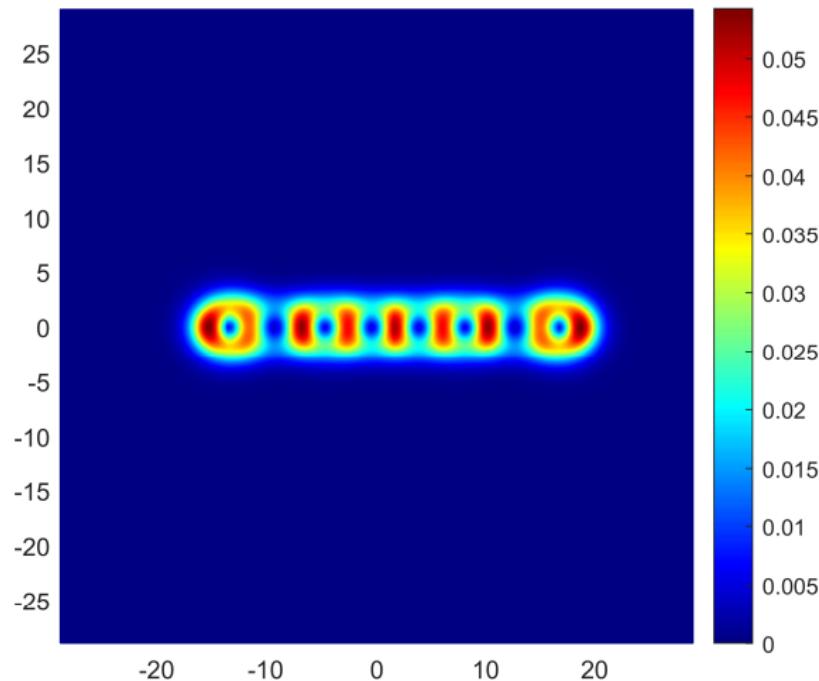
$$B = -\frac{1}{4\pi} \int_{\Sigma} \phi^* \omega \in \mathbb{Z}.$$

# Baby Skyrmions on $\mathbb{R}^2$

---

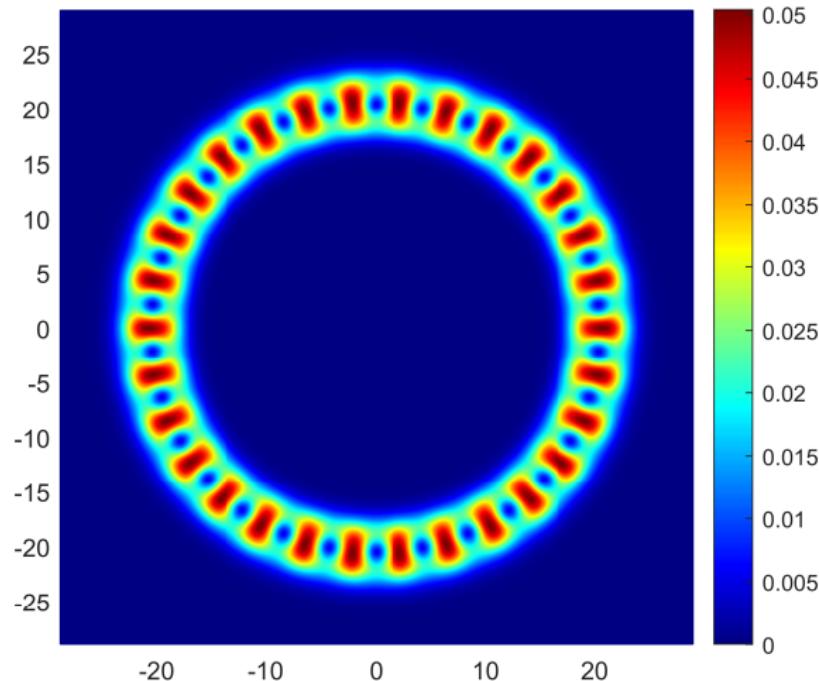
- Physical space is  $\Sigma = \mathbb{R}^2$  with local coordinates  $\mathbf{x} = (x_1, x_2)$ .
- Finite energy solutions require us to impose the boundary conditions  $\lim_{|x| \rightarrow \infty} \phi(x) \equiv \phi_\infty = (0, 0, 1)$  such that  $V[\phi_\infty] = 0$ .
- Chain solutions were proposed as a good candidate for the global minima for low charges (Foster, 2010).
- Ring solutions were found to be a better candidate for the global minima for charges  $B > B_c \in \mathbb{Z}$ , where  $B_c = 15$  for  $m^2 = 0.1$  (Winyard, 2016).
- We show that crystal chunks become the lower energy solution for  $B > B_r$  for some  $B_r \in \mathbb{Z}$ .

# Baby Skyrmion chain on $\mathbb{R}^2$



**Figure 1:** Energy density plot of the  $B = 9$  chain solution for  $m^2 = 0.1$ .

# Baby Skyrmion ring on $\mathbb{R}^2$



**Figure 2:** Energy density plot of the  $B = 30$  ring solution for  $m^2 = 0.1$ .

# Lattice baby Skyrmions

---

- The physical space of interest is the 2-torus  $\Sigma = \mathbb{R}^2/\Lambda$ , where  $\Lambda$  is the set of all 2-dimensional period lattices

$$\Lambda = \left\{ \sum_{i=1}^2 n_i(\alpha X_i) \mid n_i \in \mathbb{Z}, \alpha \in \mathbb{R}^* \right\}$$

and  $\{X_1, X_2\}$  is a basis for  $\mathbb{R}^2$ .

- Crystallographic restriction theorem: 5 lattice types in 2-dimensions. Fundamental unit cell is a certain type of a parallelogram.
- To find the optimal crystalline structure, we minimize the static energy over all period lattices.
- Equivalently, we fix our domain of  $\phi$  to be  $\mathbb{R}^2/\mathbb{Z}^2$  and identify every other torus  $\mathbb{R}^2/\Lambda$  with  $\mathbb{R}^2/\mathbb{Z}^2$ , but with a nonstandard Riemannian metric  $g$ . This metric  $g$  is the pullback of the usual metric  $\bar{g}$  on  $\mathbb{R}^2/\Lambda$  via the diffeomorphism  $\mathbb{R}^2/\mathbb{Z}^2 \rightarrow \mathbb{R}^2/\Lambda$ . As we vary  $\Lambda$  then the metric  $g$  varies (Speight, 2014) .

# Lattice baby Skyrmions

---

- Let  $F : \mathbb{R}^2/\mathbb{Z}^2 \rightarrow \mathbb{R}^2/\Lambda$  be a diffeomorphism with  $F \in \mathrm{GL}(2, \mathbb{R})$  and  $(x_1, x_2)$  be local coordinates on  $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ .
- Identify  $\mathrm{GL}(2, \mathbb{R}) = \mathrm{SL}(2, \mathbb{R}) \times \mathbb{R}^*$  and let  $A = [X_1 \ X_2] \in \mathrm{SL}(2, \mathbb{R})$  and  $\alpha \in \mathbb{R}^*$ , such that  $F = \alpha A$ .
- Now identify the Skyrme field as a map  $\phi : \mathbb{T}^2 \rightarrow S^2$ .
- Metric on  $\mathbb{T}^2$  is the pullback  $g = F^* \bar{g}$ , and the volume form is  $\mathrm{vol}_g = \sqrt{\det(F^* \bar{g})} \, dx_1 \wedge dx_2 = \alpha^2 \, dx_1 \wedge dx_2$ .
- The static energy functional on  $\mathbb{T}^2$  is

$$\begin{aligned} E = & \frac{1}{2} \int_{\mathbb{T}^2} \{ X_2^2 (\partial_1 \phi)^2 - 2(X_2 \cdot X_1) (\partial_1 \phi \cdot \partial_2 \phi) + X_1^2 (\partial_2 \phi)^2 \} \, dx_1 \, dx_2 \\ & + \frac{1}{2\alpha^2} \int_{\mathbb{T}^2} (\partial_1 \phi \times \partial_2 \phi)^2 \, dx_1 \, dx_2 + \alpha^2 \int_{\mathbb{T}^2} V[\phi] \, dx_1 \, dx_2. \end{aligned}$$

# Lattice baby Skyrmions

---

- Taking the variation of the static energy functional with respect to  $\alpha$ ,

$$\frac{\partial E}{\partial \alpha} = -\frac{\kappa^2}{\alpha^3} \int_{\mathbb{T}^2} (\partial_1 \phi \times \partial_2 \phi)^2 \, dx_1 \, dx_2 + 2\alpha \int_{\mathbb{T}^2} V[\phi] \, dx_1 \, dx_2,$$

yields the relation

$$\alpha^2 = \sqrt{\frac{\frac{\kappa^2}{2} \int_{\mathbb{T}^2} (\partial_1 \phi \times \partial_2 \phi)^2 \, dx_1 \, dx_2}{\int_{\mathbb{T}^2} V[\phi] \, dx_1 \, dx_2}} = \sqrt{\frac{E_4}{E_0}}.$$

- Finding the period lattice parameters  $X_1, X_2$  which minimize the Dirichlet energy  $E_2$  is a constrained quadratic optimization problem with the nonlinear constraint  $\det([X_1 \ X_2]) = 1$ .
- For notational convenience, let us write

$$\mathcal{E}_{ij} = \int_{\mathbb{T}^2} (\partial_i \phi \cdot \partial_j \phi) \, dx_1 \, dx_2.$$

# Lattice baby Skyrmions

---

- Then the Dirichlet energy  $E_2$  can be expressed in the form

$$E_2 = \frac{1}{2} \mathbf{x}^T \mathcal{Q} \mathbf{x},$$

where  $\mathbf{x} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$  is a 4-vector and  $\mathcal{Q}$  is the  $4 \times 4$ -symmetric matrix

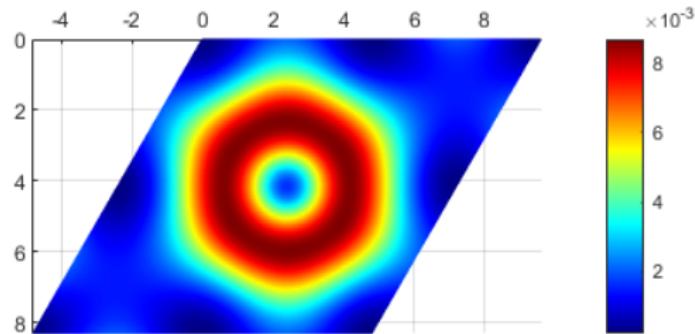
$$\mathcal{Q} = \begin{bmatrix} \mathcal{E}_{22} & 0 & -\mathcal{E}_{12} & 0 \\ 0 & \mathcal{E}_{22} & 0 & -\mathcal{E}_{12} \\ -\mathcal{E}_{12} & 0 & \mathcal{E}_{11} & 0 \\ 0 & -\mathcal{E}_{12} & 0 & \mathcal{E}_{11} \end{bmatrix}.$$

- Including the Lagrange term  $\gamma(\det([X_1 \ X_2]) - 1)$  reduces the problem to an eigenvalue problem  $\mathcal{B}\mathbf{x} = \gamma\mathbf{x}$ , where

$$\mathcal{B} = \begin{bmatrix} 0 & \mathcal{E}_{12} & 0 & -\mathcal{E}_{11} \\ -\mathcal{E}_{12} & 0 & \mathcal{E}_{11} & 0 \\ 0 & \mathcal{E}_{22} & 0 & -\mathcal{E}_{12} \\ -\mathcal{E}_{22} & 0 & \mathcal{E}_{12} & 0 \end{bmatrix}.$$

# Hexagonal crystalline structure

- The optimal lattice is found to be an **equianharmonic** lattice with a **hexagonal** crystalline structure.
- Unit cell has sides of equal length  $L_H = 9.65$  and angle  $\theta = \frac{2\pi}{3}$ .
- The infinite crystal has energy  $\mathcal{E}_{\text{crystal}} = 1.4543$ , which is lower than the infinite chain energy  $\mathcal{E}_{\text{chain}} = 1.4548$ .
- The energies mentioned above, and throughout, are normalised by the Bogomolny bound, i.e.  $\mathcal{E} := E/(4\pi B)$ .



**Figure 3:** Hexagonal crystalline structure of the infinite crystal.

## Crystal slab model on $\mathbb{R} \times S^1$

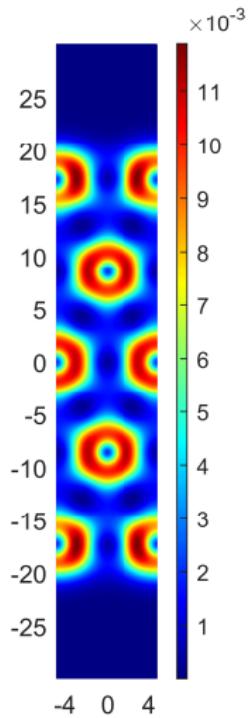
---

- Physical space is the cylinder  $\Sigma = \mathbb{R} \times S^1$ .
- This corresponds to a Dirichlet boundary condition in the  $x_2$ -direction,  $\lim_{|x_2| \rightarrow \infty} \phi = \phi_\infty$ , and a periodic boundary condition in the  $x_1$ -direction,  $\phi(x_1, x_2) = \phi(x_1 + n_1 L, x_2)$ , where  $n_1 \in \mathbb{Z}$ .
- Staggered charge-2 baby Skyrmions are layered on an infinite cylinder of width  $L = L_H$  to estimate the surface energy per unit length.
- Applying a least squares fit of the form

$$\mathcal{E}_{\text{slab}} = \mathcal{E}_{\text{crystal}} + 2 \frac{L_H}{2n} \mathcal{E}_{\text{surf}},$$

where  $\mathcal{E}_{\text{surf}}$  is the surface energy per unit length and number of layers  $n$ , we find that  $\mathcal{E}_{\text{surf}} = 6.58 \times 10^{-4}$ .

# Crystal slab layering



**Figure 4:**  $n = 5$  layer crystal slab solution on infinite cylinder of width  $L_H$ . 14/19

## Crystal chunk approximation

---

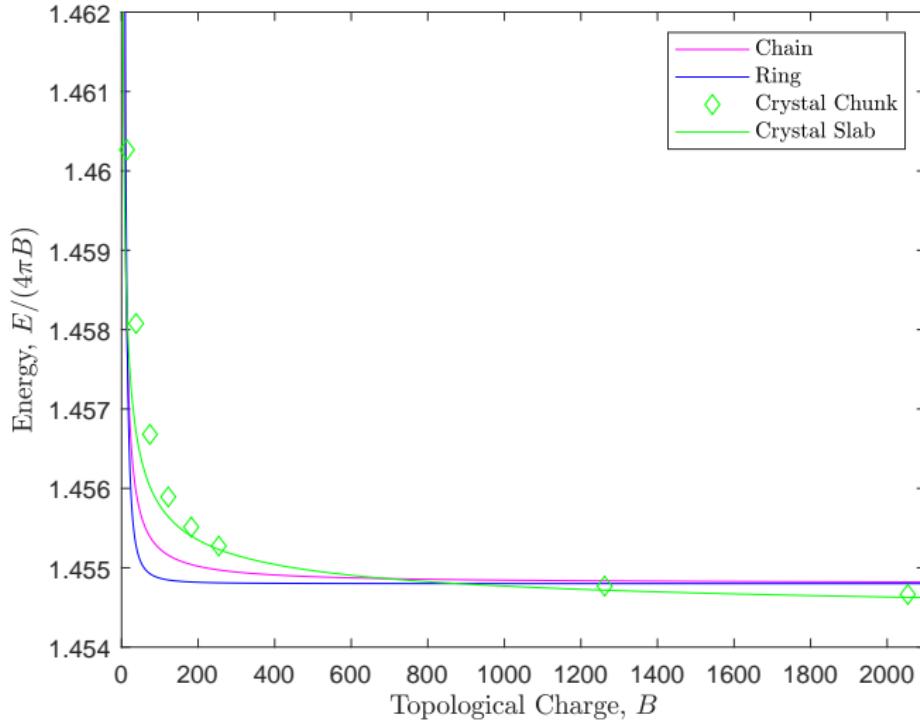
- Isoperimetric inequality in  $\mathbb{R}^2$  is  $L^2 \geq 4\pi A$ , with equality iff the boundary curve is a circle.
- Minimal crystal surface energy  $\Rightarrow L^2 = 4\pi A$  (crystal disks).
- Using this assumption, we can express chunks of the crystal in the form

$$\mathcal{E}_{\text{chunk}} = \mathcal{E}_{\text{crystal}} + 2\mathcal{E}_{\text{surf}}\sqrt{\frac{\pi}{B\rho_B}},$$

where  $\rho_B$  is the charge per unit area.

- Can empirically compare chains, rings and crystal chunks using ring and chain approximations.
- Crystal chunk solutions become global minima for approximately  $B > 877$ .

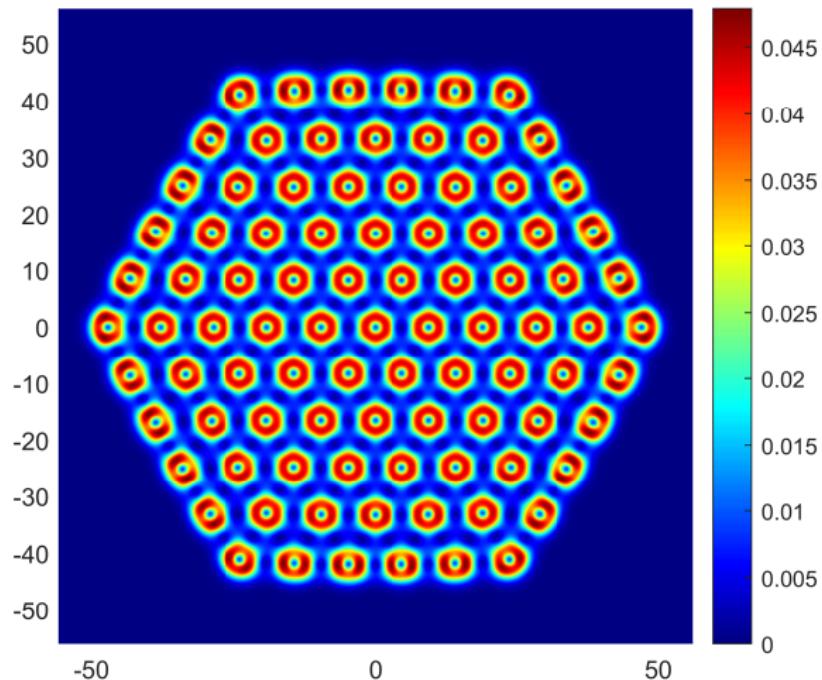
# Rings, chains and chunks



**Figure 5:** Comparison of ring, chain and crystal chunk approximations.

$B = 182$  crystal chunk

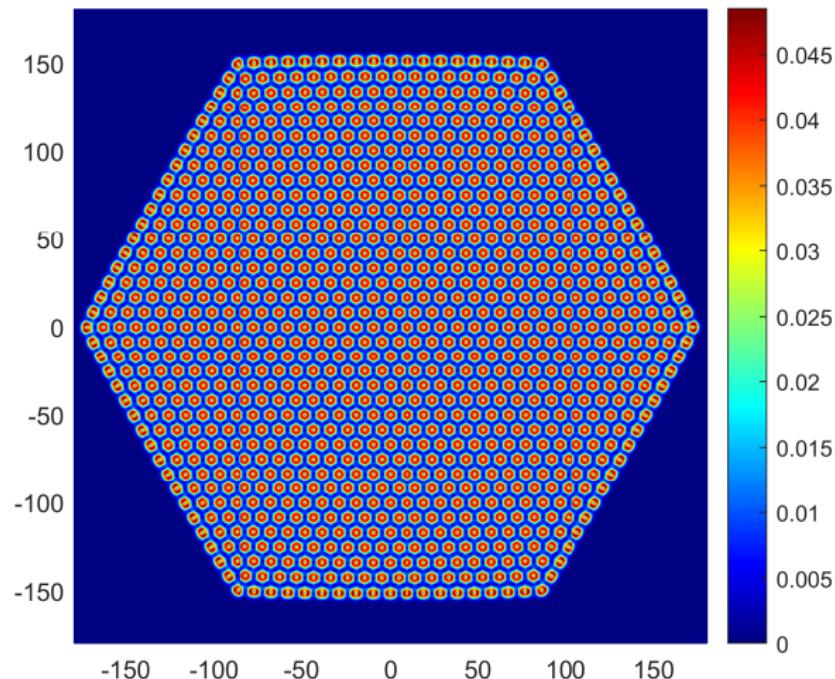
---



**Figure 6:**  $B = 182$  crystal chunk solution.

## $B = 2054$ crystal chunk

---

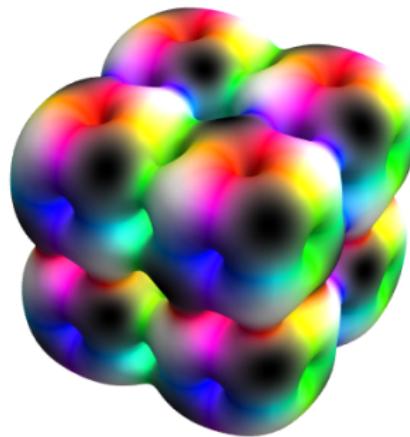


**Figure 7:**  $B = 2054$  crystal chunk solution.

## Summary

---

- Optimal crystal was thought to be a square lattice of half baby Skyrmions.
- Optimal crystalline structure is actually hexagonal.
- Optimal crystal structure in 3D is thought to be cube of half Skyrmions (Kugler & Shtrikman, 1988), see Fig. 8.
- Generalising this method, could a hexagonal structure prevail?



**Figure 8:**  $B = 32$  crystal chunk solution in the Skyrme model.