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Planar Skyrme model

The general planar Skyrme model consists of a single scalar field
@ : 3 — 5% where (I, g) is a Riemannian manifold, and (S?, h,w) is the
2-sphere with round metric h and area 2-form w.

We are interested in planar Skyrmions on:
e the plane, ¥ = R?;
e the cylinder, ¥ = S' x R; and
e the lattice, ¥ = R?/A.

The static energy functional on X is given by

1 K2 "
Bl = [ {§|d30|2+7\s0 w\2+vm}volg.
>

The planar Skyrme map has an associated degree

Bly] = - sawGZ

e

and we refer to minimisers of the energy E for fixed charge B as Skyrmions.
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Planar Skyrmions on R?

Consider the plane ¥ = R? with local coordinates z = (z1,z2) and flat
Euclidean metric g = diag(1,1). The static energy functional takes the

familiar form

1 2
Elp] = /2 {55‘1«0 Ouip+ T (9o X 050) - (9ugp x Dyp) + V[so]} da' da.
R

We consider two distinct potentials: the standard potential (Piette et al.,
1995)
Vgl =m*(1 - &%)
and the easy plane potential (Jaykka & Speight, 2010)
1)2

Vel = %mQ(w

Finite energy solutions require us to impose the boundary conditions
lim |00 ©(2) = Yoo = (0,0,1) such that V]pe] = 0.
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B =1 planar Skyrmions on R?
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density. density.

Figure 1: Plots of the energy density of (a) the axially symmetric charge-1
planar Skyrmion, for the standard potential V[p] = m?(1 — 3), and (b) the
charge-1 planar Skyrmion for the easy plane potential Vo] = %m/Q(ga])Q.
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Standard baby Skyrmions on R?

Chains solutions were proposed as a good candidate for the global minima

for low charges (Foster, 2010).

Ring solutions were found to be a better candidate for the global minima
for charges B > B, € Z, where B, = 15 for m? = 0.1 (Winyard, 2016).

Infinite crystal structure proposed to be hexagonal (Hen & Karliner, 2008).

We will show that crystal chunks become the lower energy solution for
B > B, for some B, € Z.
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(a) B =9 chain. (b) B = 30 ring.
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Easy plane baby Skyrmions on R?

For charges B < 6 with mass m? = 1, the global minima are 2B-gons or
ring-like solutions (Jdykka & Speight, 2010).

Chunks of an infinite crystal with a square crystalline structure appear to
be the global minima for almost all charges B > 6.

The easy plane model also exhibits a modular structure with some more
exotic local minima consisting of square and polygonal building blocks.
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Figure 3: ¢! density plots of local minima in the easy plane model showing an
underlying modular structure.
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Lattice planar Skyrmions

The physical space of interest is the 2-torus ¥ = R?/A, where A is the set of
all 2-dimensional period lattices

2
A= {Zni(aXi) |ni € Z,a € R*}

i=1
and {X1, X2} is a basis for R2,

Crystallographic restriction theorem: 5 lattice types in 2-dimensions.
Fundamental unit cell is a certain type of a parallelogram.

To find the optimal crystalline structure, we minimize the static energy
over all period lattices.

Equivalently, we fix our domain of ¢ to be R?/Z? and identify every other
torus R?/A with R?/Z?, but with a nonstandard Riemannian metric g. This
metric g is the pullback of the usual metric § on R*/A via the
diffeomorphism R?/Z% — R?/A. As we vary A then the metric g varies
(Speight, 2014).

8/21



Lattice planar Skyrmions

Let F: T2 — R?/A be a diffeomorphism with F € GL(2,R) and (z1,22) be
local coordinates on T? = R?/Z2.

Identify GL(2,R) = SL(2,R) x R and let A = [X; X»] € SL(2,R) and
a € R*, such that F = a.A.

Now identify the Skyrme field as a map ¢ : T? — S2.

The metric on T2 is the pullback g = F*§ of the flat Euclidean metric § on
R?/A. Explicitly, this is

o2 XX Xi-Xe
g X1 Xo Xo-Xo|

The Riemannian volume form is simply

vol, = /det gdz" A da® = o dz' A dz”.
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Lattice planar Skyrmions

The Dirichlet energy on T? given by

/ |dg|? vol,
5/ 9" 0" 000" hap \/det g da* da®
2

1
2

B,

{(X2 . X2)(61(p)2 — 2(X2 . Xl)(algﬁ . 82@) + (Xl . Xl)(agtp)Q} dIl d$2.
2
Likewise, we can compute the Skyrme energy on T2,
2
Ey = ’i/ " w|? vol
:—/ O‘B“gowaucpw , v/det g dz'dz®

= / (D1 X D2) - (D1 X Do) dz' da?
T2

2a2

and the potential energy,

Ey=do° Vg] da' dz?.

T2
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Lattice planar Skyrmions

Taking the variation of the static energy functional with respect to «,

oF K2 2.1 2 142
—=-— (01 X Do) da da” + 2a | V]y]dz dz”,
Ja a3 Jt2 T2

yields the relation

o [ e (Orp x ) datde? By
N Jr2 Vig] dat da? -V E

Finding the period lattice parameters X1, X2 which minimize the Dirichlet
energy Fs is a constrained quadratic optimization problem with the
nonlinear constraint det([X: X2]) = 1.

For notational convenience, let us write

Eij = / (Dip - Bjp) da* da®.
T2
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Lattice planar Skyrmions

Then the Dirichlet energy Es can be expressed in the form

1 7 0 Eaa 0 —&12
B, — = -
27" Qw, € —&12 0 En 0 |’

0 —&12 0 &

where ¢ = [Xl
X

} is a 4-vector and Q a 4 X 4-symmetric matrix.
2

This constrained quadratic optimization problem can be solved by
including the Lagrange term ~(det([X1 X2]) — 1), where v € R* is a
Lagrange multiplier. This reduces the problem to an eigenvalue problem

0 512 0 _511

—&2 0 & 0
Bx = B=
T 0 E2 0 &2

—&2 0 &2 0
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Standard crystalline structure

The optimal lattice is found to be an equianharmonic lattice with a

hexagonal crystalline structure.

The infinite crystal has energy Ecrystal = 1.4543, which is lower than the

infinite single chain energy Echain = 1.4548 and infinite adjacent chains

energy Ea-chains = 1.4545.

8
7
6
5
4
3
2
1
4
o 2 4 & 8

(2)

Figure 4: Energy density plots of (a) minimal energy hexagonal crystal structure
and (b) adjacent chain crystal structure in their corresponding optimal lattices.
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Easy plane crystalline structure

The lowest energy crystal structure is a square of half lumps in a square
lattice for B = 2, with energy Ep—2 = 1.5152.

Two other crystalline structures were found with slightly higher energies: a
hexagonal crystalline structure in an equianharmonic lattice for B = 3 with
energy Ep—3 = 1.5207, and an octogonal crystal structure in a square
lattice with energy Ep—4 = 1.5228.
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(a) Square crystal. (b) Hexagonal crystal. (c) Octogonal crystal.

Figure 5: ¢! density plots of the (a) B = 2 square crystal, (b) B = 3 hexagonal
crystal and (c) B = 4 octogonal crystal in their corresponding optimal lattices.
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Crystal slab model on R x S*!

Physical space is the cylinder ¥ = R x S*.

This corresponds to a Dirichlet boundary condition in the zo-direction,
lim |4, |00 = Yoo, and a periodic boundary condition in the x:-direction,
p(z1,22) = @(x1 + n1L,z2), where nq € Z.

Planar Skyrmions are layered on an infinite cylinder of width L = Lerystal,
in the optimal crystal arrangement, to estimate the surface energy per unit
length.

Applying a least squares fit to the model

Ler
ystal
gslab = gcrystal + 2 mn gsurf,

where Equ,t is the surface energy per unit length and number of layers n, we

can calculate Egurt.

For the standard potential we find that Egyr = 6.58 X 10_4, and for the
easy plane potential Egurr = 0.0025.
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Crystal slab layering
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Figure 6: Energy density and ¢! density plots showing a (a) 7-layer standard
hexagonal crystal slab and (b) a 5-layer easy plane square crystal slab.
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Crystal chunk approximation

Want to find the crystal chunk that minimises its boundary length and
hence its surface energy contribution = isoperimetric problem.

Isoperimetric inequality in R? is L? > 47 A (Osserman, 1978), with equality
iff the crystal boundary is a cirle.

Minimal crystal surface energy = L? = 47w A (crystal disks).

Using this assumption, we can express chunks of the crystal in the form

7T
gchunk - gcrystal + 2gsurf‘ / 371037

where pp is the charge per unit area.

Can empirically compare chains, rings and crystal chunks using ring and
chain approximations obtained by (Winyard, 2016).

Crystal chunk solutions become global minima for approximately B > 877.
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Rings, chains and chunks
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Figure 7: Comparison of ring, chain and crystal chunk approximations.
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Standard crystal chunks
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Figure 8: Energy density plots of crystal chunk solutions in the standard model,
n is the equivalent crystal slab thickness.
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Easy plane crystal chunks
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Figure 9: ¢! density plots of crystal chunk solutions in the easy plane model.

These are all global minima.
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Summary

Optimal crystalline structure is hexagonal for the standard potential, and
square for the easy plane potential.

Crystal chunks are global minima for low charges B for the easy plane
model, whereas they are for very large charges B for the standard model.

Optimal crystal structure in the Skyrme model is thought to be cube of half
Skyrmions (Kugler & Shtrikman, 1988).

Generalising this method, will this half Skyrmion cube structure prevail?

Figure 10: B = 32 crystal chunk solution in the Skyrme model. Runge coloring

scheme as detailed in (Feist et al., 2013). 21 /21
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