Numerical Solutions for Skyrme Models

Paul Leask, mmpnl@leeds.ac.uk
May 20, 2021

University of Leeds

UK Research 21
UNIVERSITY OF LEEDS . and Innovation { [B[ECM@}

1/31



Outline

Mathematical framework for Skyrmions
The Skyrme model

Initial configurations
Hedgehog Ansatz

Rational map ansatz
Arrested Newton flow

Skyrme-Faddeev model

2/31



Mathematical framework for Skyrmions

e The Skyrme model’s natural setting is Riemannian

geometry.

o Let (M, gx) and (N, gn) be 3-dimensional, orientable and

connected Riemannian manifolds.
e A Skyrmion is a topologically non-trivial map U : M — N.

e The energy functional will be a measure of the extent to
which the map U is metric preserving.

o Skyrmions are field configurations that are minimal energy

solutions to the associated Euler—Lagrange equations.
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Mathematical framework for Skyrmions

« Introduce coordinates p’ on M and U7 on N and
orthonormal frame fields m, on M and ng on N.

e Represent U by the functions U’(p', p?, p3).
e The deformation induced by U at p can be determined by

the Jacobian matrix

OUI

e Geometric distortion is unaffected by rotations in M and
isorotations in V.

e In analogy with elasticity theory, we can express the energy
of the Skyrme field U in terms of its strain tensor D.

4/31



Basic invariants of the strain tensor D

« The strain tensor is defined as D = JJT.

e This is a 3 x 3 symmetric, positive-definite matrix with
eigenvalues )\%, )\%, )\g.

e Basic invariants of D are the coefficients in the
characteristic polynomial x p(ga) = det(D — gpsid). These

are

Tr D = Af + A3 + A3,
1 1
5 (T D)% — 5 T D? = M3+ N3N+ 3N
det D = AIX\3\3.

e The deviation of the eigenvalues of D from unity
determines the deformation induced by U. If D = id, then
there is no deformation and U is locally an isometry. 5/31



Constructing invariants from the strain tensor D

e The simplest invariant is the Dirichlet energy
b = / Tr D\/det gy &2
M
= /M ()\% + A2+ )\g) Vdet gy dz,

whose critical points are harmonic functions.

e The second invariant is the Skyrme energy
1 1
By = / (2(Tr D)* - 5T D2> Vdet gy d3z
M

= / (AIA3 + A3A3 4+ A3AT) V/det gu Pz
M
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Constructing invariants from the strain tensor D

e In the usual Skyrme model, the static energy functional is
constructed from both of these invariants:

1 1
E:/ (TrD—i— 2(TrD)2—2TrD2> Vdet gy Az
M

= /M (A + A3+ A3+ ATA3 + A3A3 + A3AT) v/det gar AP

e The third basic invariant actually gives us the topological
degree of the map U,

1
B = 52 Vdet Dy/det gy &3z
™ JM

1
= — [ XiXodg/det gy A3z
27'1'2 M
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Faddeev-Bogomolny energy bound

e We can construct a lower bound on the energy of a
Skyrmion within a given homotopy class by writing the

energy E in the form

E= / (A1 £ 2023)% + (A2 £ A3h1) + (A3 £ A1ho)?
M
+6)\1)\2)\3) det gy dgx,

and using the simple inequality

(AL £ XX3)2 + (A2 £ A3M1)2 + (A3 £ A 00)2 > 0.

o This gives us the Faddeev—Bogomolny lower bound on the
energy,
E > 127%|B|.
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The Skyrme model

« In the usual Skyrme model, physical space is M = R? and
the target is N = SU(2).

o The static Skyrme model consists of a single scalar field,
U :R? — SU(2) given explicitly by

U(x) = o(x)id + im(x) - T,

where 7 = (71, a2, m3) are the pion fields, 7 are the Pauli
matrices and o is the sigma field.

e Nuclei are modelled as topological solitons in a nonlinear
field theory of pions.

e Realized as a low energy effective field theory for QCD in
the large colour limit, in which nuclei become classical and
heavy.
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The Skyrme model

 The strain tensor associated to U : R® — SU(2) is
1
Dij = —5 TT(LZ'LJ'),
where the su(2)-valued (left) current L; = UT(9;U) is the
pullback of the Maurer—Cartan 1-form on SU(2).
e The corresponding static energy functional is

b= /R3 {_;Tr(LiLi) o 1716Tr ([Li, Lj”Lia Lj]) + V(U)} d3:17’

where V(U) = m? Tr(id — U) is the usual pion mass
potential.
e The energy F is invariant under translations and rotations

in physical space, as well as rotations in isospace,
U — AUA' for A € SU(2).
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The Skyrme model

« We have the nonlinear o-model constraint o2 + -7 = 1
and the identification SU(2) = 3.

o Finite energy configurations require us to impose the
boundary condition U — id as |x| — oco. This gives us the
one-point compactification of space R® U{oo} = §3.

« Topologically, the Skyrme field is a map U : §2 — §3, with
winding number B € 73(5%) & Z.

e The topological charge B is identified with the physical
baryon number, with explicit integral form

1 3
B=—5= /R i Tr(LiliLy) d*a.

e The minimum energy field configurations for each baryon

number B are known as Skyrmions and their energy FE is

identified with their rest mass. 11/31



Derrick’s non-existence theorem

o Apply a rescaling of the spatial coordinates x — Ax.
e The energy terms becomes ey = %, es = AE4 and ey = %

o Rescaled energy is simply

B j2
e(\) = 72+)\E4+ Ag.

e A must minimise e(\) at A\ = 1, which requires
Ey = E> + 3Ep.

e The terms Ey & FEy and Ej4 scale in opposite ways, so
Skyrmions cannot:

1. expand to cover all of space,
2. contract to a localized single point.
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The Skyrme model

o For numerics, it is convenient to write the Skyrme field as a
4-vector U = ¢, e,, where ¢, = (0, 7;) and e, = (id, i1y),
such that ¢, ¢, = 1.

e Substituting this into the Skyrme Lagrangian we obtain a

non-linear o-model form,
L= /RS {aigz) S0l — % (09 x D;0) - (0" x D ¢p)
—2m2(1 — J)} d3z.
e Then the static energy functional is defined by

E = / {a@ 0+ % (8;p x D) + 2m>(1 — a)} d?z.
R3
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How to construct Skyrmions

e The basic B =1 Skyrmion is based on a spherical hedgehog
ansatz where the radial profile function f(r) is the solution
of an ODE.

e To construct higher charge Skyrmions there are a few
methods:

e One is to place B =1 Skyrmions orientated in the
attractive channel. The best arrangements are on a
subcluster of a bravais lattice, the most favourable being a
face-centred cubic (FCC) lattice.

e Another is to build Skyrme fields using a rational map
approximation $? — S% and a radial profile f(r).

¢ One could also relate Skyrmions to instantons or monopoles.
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{} Ansatz

o The hedgehog field is U(x) = exp (if(r)%x - 7). In terms of
the 7 and o fields,

o=cosf(r), m=sinf(r)x.

These are known as hedgehogs because the pion fields point
radially outwards.
o The profile function f(r) must satisfy the boundary
conditions f(co) = 0 and f(0) = nm with n € Z.
e Such a hedgehog solution has baryon number B = n since
B= L[ Sin?fjfélﬂrzdr = lf(O) =n.

272 J, r2 dr T
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{} Ansatz

o For the hedgehog ansatz, the (massless) static energy is

o0 i4
E':47T/0 [T2 <j‘£> + 2si 2f<1+(ji) )4—8122]0] dr.

e The corresponding field equations reduce to the second

order non-linear ordinary differential equation

2 .
(r? + 2sin® f) ﬁ+2ri+31n2f [(jﬁ) —1- sm2f] = 0.

dr r2

e This ODE can only be solved numerically and has a unique
solution for each B.

e The B = 1 Skyrmions has energy By = 1.232 x 1272, which
is greater than the Bogomolny bound, E; > 1272,
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{y Ansatz

o Using a shooting method, the profile function f(r) for the
B =1 hedgehog ansatz is found to be:
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B =1 Skyrmion

e The B =1 Skyrmion is visualised by plotting a constant
baryon density isosurface, e.g. B = 0.2, and is coloured

using the Runge colour sphere.

Figure 1: Constant baryon density isosurface plot of the minimal

energy Skyrmion with massive pions for baryon number B = 1.
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Rational map ansatz

« Rational maps are functions from S? — 52, whereas as the
Skyrme field is a map R? — §3.

o Identify the rational map target S? with spheres of
constant latitude on $3, and the rational map domain S$?
with spheres in R? of radius r.

o Using polar coordinates for R3, z = tan(#/2) exp(ip), with

radius r, the rational map ansatz is

if(r) (1—|R*> 2R
1+ |R|? 2R |R*-1

where f(r) is a radial profile function with f(0) = = and

)

U(r,z) = exp

f(o0) =0, and R(z) = p(2)/q(z) is a rational map of degree
B = max(deg p, deg q).
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Rational map ansatz

e Substituting the rational map ansatz into the static energy

functional yields

00 2 2
E:47r/ r2{(j];) +23sin2f<<ji> +1)
0

sin® f
+Z 3 + 2m?(cos f — 1)} dr,

where 7 is the purely angular integral to be minimised for
choice of rational map R:

L (1P
 4rm 1+|RJ?

dR

dR\" 2idadz
dz (

1+ 2%)>

o Optimising Z and the profile function f(r) gives
approximate Skyrmions, but further numerical relaxation is
required to find true Skyrmions. 20/31



Rational map ansatz

e Below are some of the well known rational maps of high

symmetry which we use as initial configurations for the

numerical relaxation:

B R(2) Symmetry
1 R(z) =z 0(3)
2 R(z) = 2* 0O2)xZ
3 R(z) = jg—\/?’_l T,
L RG=SREEn | O
5| RGe) =S| D
6 R(Z) = ﬁ D4d
T RG) = ey | N

e The Skyrmions are visualised by plotting a constant baryon

density isosurface, e.g. B = 0.2, and are coloured using the

Runge colour sphere.
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Arrested Newton flow

e To find minima of the static energy, we must numerically
relax the Skyrme field.

¢ The numerical methods are carried out on a Ny X Ny x N3
grid with lattice spacings Az, Axy, Axg.

e The Skyrme energy is then discretised using a 4th order,
5-point stencil, central finite-difference scheme.

e The first order and second order spatial derivatives with
respect to the local coordinate z;, with the other
derivatives defined analogously, are given respectively by

1 2 2 1
a¢ai,j,k o ﬁ(bai—Q,j,k - §¢ai—1,j,k + §¢ai+1,j,k - ﬁ¢ai+2,j,k

8:]51 N A$1 ’
2 1 4 5 4 1
9 ¢ai,j,k _ 7ﬁ¢ai72,j,k + §¢ai71,j,k o §¢ai,j,k + §¢ai+1,j,k - ﬁ¢ai+2,j,k
O} (Azy)?
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Arrested Newton flow

o This yields a discrete approximation Egjs[¢] to the static
energy functional E[¢], which we can regard as a function
Edis :C —R.

e The discretised configuration space is the manifold
C — (S3)N1 No N3 C R4N1 No Ng‘

o We solve Newton’s equations of motion for a particle on the
discretised configuration space C with potential energy FEyis.

o Explicitly, we are solving the system of 2nd order ODEs

. 5Edis
o

with initial velocity ¢(0) = 0.

b(t) = (9], ¢(0) = ¢, (1)
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Arrested Newton flow

o Setting ¥ (t) = ¢ as the velocity with 1(0) = ¢(0) = 0

reduces the problem to the coupled system of 1st order

ODEs
d[ﬂ__[ ¥ ] ¢m1_[%]
at|g] [ ~%aelel] [wo) o]

e We implement a 4th order Runge-Kutta method to solve

this coupled system.
e Then the evolution of the velocity ¥ is given by

Pasr = Yo+ 5 (W +2)n+ 200)a + (W),

and the Skyrme field ¢ evolution is given by

Bt = Gn -+ = (k1) + 2(R2)o+ 2(ks)n + (ki)
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Arrested Newton flow

e The slopes k;, I; for 1 < ¢ < 4, with time-step h, for the
Skyrme field ¢, and the velocity v, are
5EdlS

(k)n = b, (1) =~ - @],
(ko = (4 (000 ) (b= 0258 0,4 (k).
(ko = (4 3(0)a) ()= —n 55" |+ §<k2>n} ,
(ki = b (4 () (W)= —h 5% [+ ().

e Main advantage of ANF: the field will accelerate towards
an energy minimum.
e So that the field does not overshoot, we take out all the

kinetic energy whenever the potential energy is increasing. 25/31



Arrested Newton flow

e The flow then terminates when every component of the

energy gradient 6?&‘;5 is zero to within a pre-assigned

tolerance.

o It is essential that we enforce the constraint ¢ - ¢ = 1.

e Normally done by including a Lagrange multiplier term
into the Lagrangian.

e To do this numerically we have to pull our target space
back onto $3. This is done by normalizing the Skyrme field
@ each loop, ¢, — %

e We also need to project out the component of the energy
gradient, and velocity, in the direction of Skyrme field,

€ e (0 N o
500 0 <6¢> ¢> s

o b
Yoo o= (4 9) 2
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Skyrmions for charge B <8

o » @

(a) B=2:0(2) (b) B=3:T, (c) B=4: 0,

$ & &

(d)B:5tD2d (e)B:?:Yh (f)B:81D4h,

Table 1: Constant baryon density isosurface plots of the minimal
energy Skyrmions with massive pions for baryon numbers B < 8.
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Skyrme—Faddeev model

e The Skyrme-Faddeev model involves a map ¢ : R® — §2,
which is realized as a 3-vector ¢ = (1, d2, ¢3).

o The static energy of the model is given by
FE = 327712\/5 o {az(b . az¢ + % (8Z¢ X 8j¢)2 + V((b)} d3$,
where the potential term is the standard baby Skyrme
potential, V(¢) = 2m2(1 — ¢3).

o Finite energy configurations require

lim ¢(x) = ¢poo = constant.
|z| =00

¢ We must select ¢oo from the vacuum manifold of the
model.

o For our choice of potential, we set ¢oo = (0,0, 1).
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Skyrme—Faddeev model

o This gives us the one-point compactification of space
R3U{o0} = 55

o FEach field can be characterized by the equivalence classes
of the homotopy group m3(S5?) = Z.

 The topological charge Q € 73(S%) = Z is the Hopf charge
and finite energy field configurations are referred to as
Hopfions.

e Let F' = ¢*w be the pullback of the area 2-form on the
target 2-sphere to S3.

o Triviality of the second cohomology group of the 3-sphere
implies that F is exact, say F = dA.

e The Hopf charge @) can be expressed as the integral of the
Chern—Simons 3-form over the 3-sphere:

1
Q:/ FAA. 29/31
SQ
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Skyrme—Faddeev model

e There exists a lower bound on the static energy in terms of
the Hopf charge Q.

e This cannot be attained by a Bogomolny-type argument,
but is based on Sobolev-type inequalities. This was shown
by Vakulenko & Kapitanski to be

3\ 3/8
E> cQ3/4, where ¢ = <16> .

o As before, we create suitable initial field configurations for
hopfions using rational maps W : $3 — CP!.

¢ Some example solutions are shown below. These show the
linking structure between two independent points (—1,0,0)
and (0,0, —1) on the target 2-sphere, and the associated

energy density isosurface. s0/31
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(a) Q =38: K:3,2 knot (b) Q =8: ]ngg knot
linking energy density

o

(d) Q=12: K5 knot
energy density

(¢) @ =12: K52 knot
linking
Table 2: Position (blue tube) and linking (red tube) curve for m =1
Hopfions. These are preimages of the two cylinders defined by 31/81
¢3 = —1+4 € and ¢y = —1 + ¢, where € = 0.2.
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