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Mathematical framework for Skyrmions

• The Skyrme model’s natural setting is Riemannian
geometry.

• Let (M , gM ) and (N , gN ) be 3-dimensional, orientable and
connected Riemannian manifolds.

• A Skyrmion is a topologically non-trivial map U : M → N .
• The energy functional will be a measure of the extent to

which the map U is metric preserving.
• Skyrmions are field configurations that are minimal energy

solutions to the associated Euler–Lagrange equations.
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Mathematical framework for Skyrmions

• Introduce coordinates pi on M and U j on N and
orthonormal frame fields mα on M and nβ on N .

• Represent U by the functions U j(p1, p2, p3).
• The deformation induced by U at p can be determined by

the Jacobian matrix

Jαβ = mi
α

∂U j

∂pi nβj .

• Geometric distortion is unaffected by rotations in M and
isorotations in N .

• In analogy with elasticity theory, we can express the energy
of the Skyrme field U in terms of its strain tensor D.
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Basic invariants of the strain tensor D

• The strain tensor is defined as D = JJT .
• This is a 3 × 3 symmetric, positive-definite matrix with

eigenvalues λ2
1, λ

2
2, λ

2
3.

• Basic invariants of D are the coefficients in the
characteristic polynomial χD(gM ) = det(D − gM id). These
are

TrD = λ2
1 + λ2

2 + λ2
3,

1
2
(TrD)2 − 1

2
TrD2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

detD = λ2
1λ

2
2λ

2
3.

• The deviation of the eigenvalues of D from unity
determines the deformation induced by U . If D = id, then
there is no deformation and U is locally an isometry. 5/31



Constructing invariants from the strain tensor D

• The simplest invariant is the Dirichlet energy

E2 =

∫
M
TrD

√
det gM d3x

=

∫
M

(
λ2

1 + λ2
2 + λ2

3
)√

det gM d3x,

whose critical points are harmonic functions.
• The second invariant is the Skyrme energy

E4 =

∫
M

(
1
2
(TrD)2 − 1

2
TrD2

)√
det gM d3x

=

∫
M

(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1
)√

det gM d3x.
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Constructing invariants from the strain tensor D

• In the usual Skyrme model, the static energy functional is
constructed from both of these invariants:

E =

∫
M

(
TrD +

1
2
(TrD)2 − 1

2
TrD2

)√
det gM d3x

=

∫
M

(
λ2

1 + λ2
2 + λ2

3 + λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1
)√

det gM d3x.

• The third basic invariant actually gives us the topological
degree of the map U ,

B =
1

2π2

∫
M

√
detD

√
det gM d3x

=
1

2π2

∫
M
λ1λ2λ3

√
det gM d3x.
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Faddeev–Bogomolny energy bound

• We can construct a lower bound on the energy of a
Skyrmion within a given homotopy class by writing the
energy E in the form

E =

∫
M

(
(λ1 ± λ2λ3)

2 + (λ2 ± λ3λ1)
2 + (λ3 ± λ1λ2)

2

+6λ1λ2λ3)
√
det gM d3x,

and using the simple inequality

(λ1 ± λ2λ3)
2 + (λ2 ± λ3λ1)

2 + (λ3 ± λ1λ2)
2 ≥ 0.

• This gives us the Faddeev–Bogomolny lower bound on the
energy,

E ≥ 12π2|B|.
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The Skyrme model

• In the usual Skyrme model, physical space is M = R3 and
the target is N = SU(2).

• The static Skyrme model consists of a single scalar field,
U : R3 → SU(2) given explicitly by

U (x) = σ(x)id + iπ(x) · τ ,

where π = (π1, π2, π3) are the pion fields, τ are the Pauli
matrices and σ is the sigma field.

• Nuclei are modelled as topological solitons in a nonlinear
field theory of pions.

• Realized as a low energy effective field theory for QCD in
the large colour limit, in which nuclei become classical and
heavy.
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The Skyrme model

• The strain tensor associated to U : R3 → SU(2) is

Dij = −1
2
Tr(LiLj),

where the su(2)-valued (left) current Li = U †(∂iU ) is the
pullback of the Maurer–Cartan 1-form on SU(2).

• The corresponding static energy functional is

E =

∫
R3

{
−1

2
Tr(LiLi)−

1
16

Tr ([Li ,Lj ][Li ,Lj ]) + V (U )

}
d3x,

where V (U ) = m2 Tr(id − U ) is the usual pion mass
potential.

• The energy E is invariant under translations and rotations
in physical space, as well as rotations in isospace,
U → AUA† for A ∈ SU(2).
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The Skyrme model

• We have the nonlinear σ-model constraint σ2 + π · π = 1
and the identification SU(2) ∼= S3.

• Finite energy configurations require us to impose the
boundary condition U → id as |x| → ∞. This gives us the
one-point compactification of space R3 ∪{∞} ∼= S3.

• Topologically, the Skyrme field is a map U : S3 → S3, with
winding number B ∈ π3(S3) ∼= Z.

• The topological charge B is identified with the physical
baryon number, with explicit integral form

B = − 1
24π2

∫
R3
εijk Tr(LiLjLk)d3x.

• The minimum energy field configurations for each baryon
number B are known as Skyrmions and their energy E is
identified with their rest mass. 11/31



Derrick’s non-existence theorem

• Apply a rescaling of the spatial coordinates x 7→ λx.
• The energy terms becomes e2 = E2

λ , e4 = λE4 and e0 = E0
λ3 .

• Rescaled energy is simply

e(λ) = E2
λ

+ λE4 +
E0
λ3 .

• λ must minimise e(λ) at λ = 1, which requires
E4 = E2 + 3E0.

• The terms E2 & E0 and E4 scale in opposite ways, so
Skyrmions cannot:

1. expand to cover all of space,
2. contract to a localized single point.
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The Skyrme model

• For numerics, it is convenient to write the Skyrme field as a
4-vector U = φµeµ, where φµ = (σ, πj) and eµ = (id, iτj),
such that φµ φµ = 1.

• Substituting this into the Skyrme Lagrangian we obtain a
non-linear σ-model form,

L =

∫
R3

{
∂iφ · ∂iφ− 1

2
(∂iφ× ∂jφ) ·

(
∂iφ× ∂jφ

)
−2m2(1 − σ)

}
d3x.

• Then the static energy functional is defined by

E =

∫
R3

{
∂iφ · ∂iφ+

1
2
(∂iφ× ∂jφ)

2 + 2m2(1 − σ)

}
d3x.
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How to construct Skyrmions

• The basic B = 1 Skyrmion is based on a spherical hedgehog
ansatz where the radial profile function f (r) is the solution
of an ODE.

• To construct higher charge Skyrmions there are a few
methods:

• One is to place B = 1 Skyrmions orientated in the
attractive channel. The best arrangements are on a
subcluster of a bravais lattice, the most favourable being a
face-centred cubic (FCC) lattice.

• Another is to build Skyrme fields using a rational map
approximation S2 → S2 and a radial profile f (r).

• One could also relate Skyrmions to instantons or monopoles.
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Ansatz

• The hedgehog field is U (x) = exp (if (r)x̂ · τ ). In terms of
the π and σ fields,

σ = cos f (r), π = sin f (r)x̂.

These are known as hedgehogs because the pion fields point
radially outwards.

• The profile function f (r) must satisfy the boundary
conditions f (∞) = 0 and f (0) = nπ with n ∈ Z.

• Such a hedgehog solution has baryon number B = n since

B = − 1
2π2

∫ ∞

0

sin2 f
r2

df
dr

4πr2dr =
1
π

f (0) = n.
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Ansatz

• For the hedgehog ansatz, the (massless) static energy is

E = 4π
∫ ∞

0

[
r2
(

df
dr

)2
+ 2 sin2 f

(
1 +

(
df
dr

)2
)

+
sin4 f

r2

]
dr .

• The corresponding field equations reduce to the second
order non-linear ordinary differential equation(
r2 + 2 sin2 f

) d2f
dr2+2r df

dr
+sin 2f

[(
df
dr

)2
− 1 − sin2 f

r2

]
= 0.

• This ODE can only be solved numerically and has a unique
solution for each B.

• The B = 1 Skyrmions has energy E1 = 1.232 × 12π2, which
is greater than the Bogomolny bound, E1 > 12π2.
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Ansatz

• Using a shooting method, the profile function f (r) for the
B = 1 hedgehog ansatz is found to be:
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0

0.5

1
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2

2.5

3

3.5
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B = 1 Skyrmion

• The B = 1 Skyrmion is visualised by plotting a constant
baryon density isosurface, e.g. B = 0.2, and is coloured
using the Runge colour sphere.

Figure 1: Constant baryon density isosurface plot of the minimal
energy Skyrmion with massive pions for baryon number B = 1.
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Rational map ansatz

• Rational maps are functions from S2 → S2, whereas as the
Skyrme field is a map R3 → S3.

• Identify the rational map target S2 with spheres of
constant latitude on S3, and the rational map domain S2

with spheres in R3 of radius r .
• Using polar coordinates for R3, z = tan(θ/2) exp(iϕ), with

radius r , the rational map ansatz is

U (r , z) = exp

[
if (r)

1 + |R|2

(
1 − |R|2 2R̄

2R |R|2 − 1

)]
,

where f (r) is a radial profile function with f (0) = π and
f (∞) = 0, and R(z) = p(z)/q(z) is a rational map of degree
B = max(deg p, deg q).
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Rational map ansatz

• Substituting the rational map ansatz into the static energy
functional yields

E = 4π
∫ ∞

0
r2

{(
df
dr

)2
+ 2B sin2 f

((
df
dr

)2
+ 1

)

+I sin
4 f

r2 + 2m2(cos f − 1)
}

dr ,

where I is the purely angular integral to be minimised for
choice of rational map R:

I =
1

4π

∫ (
1 + |z|2

1 + |R|2

∣∣∣∣dR
dz

∣∣∣∣)4 2idzdz̄
(1 + |z|2)2 .

• Optimising I and the profile function f (r) gives
approximate Skyrmions, but further numerical relaxation is
required to find true Skyrmions. 20/31



Rational map ansatz

• Below are some of the well known rational maps of high
symmetry which we use as initial configurations for the
numerical relaxation:

B R(z) Symmetry
1 R(z) = z O(3)
2 R(z) = z2 O(2)× Z

3 R(z) = z3−
√

3iz√
3iz2−1 Td

4 R(z) = z4+2
√

3iz2+1
z4−2

√
3iz2+1 Oh

5 R(z) = z(z4+bz2+a)
az4−bz2+1 D2d

6 R(z) = z4−a
z(az4+1) D4d

7 R(z) = bz6−7z4−bz2−1
z(z6+bz4+7z2−b) Yh

• The Skyrmions are visualised by plotting a constant baryon
density isosurface, e.g. B = 0.2, and are coloured using the
Runge colour sphere. 21/31



Arrested Newton flow

• To find minima of the static energy, we must numerically
relax the Skyrme field.

• The numerical methods are carried out on a N1 × N2 × N3

grid with lattice spacings ∆x1,∆x2,∆x3.
• The Skyrme energy is then discretised using a 4th order,

5-point stencil, central finite-difference scheme.
• The first order and second order spatial derivatives with

respect to the local coordinate x1, with the other
derivatives defined analogously, are given respectively by

∂φai,j,k

∂x1
=

1
12φai−2,j,k − 2

3φai−1,j,k +
2
3φai+1,j,k − 1

12φai+2,j,k

∆x1
,

∂2φai,j,k

∂x2
1

=
− 1

12φai−2,j,k +
4
3φai−1,j,k − 5

2φai,j,k +
4
3φai+1,j,k − 1

12φai+2,j,k

(∆x1)2 .
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Arrested Newton flow

• This yields a discrete approximation Edis[φ] to the static
energy functional E [φ], which we can regard as a function
Edis : C → R.

• The discretised configuration space is the manifold
C = (S3)N1 N2 N3 ⊂ R4 N1 N2 N3 .

• We solve Newton’s equations of motion for a particle on the
discretised configuration space C with potential energy Edis.

• Explicitly, we are solving the system of 2nd order ODEs

φ̈(t) = −δEdis
δφ

[φ], φ(0) = φ0, (1)

with initial velocity φ̇(0) = 0.

23/31



Arrested Newton flow

• Setting ψ(t) = φ̇ as the velocity with ψ(0) = φ̇(0) = 0
reduces the problem to the coupled system of 1st order
ODEs

d
dt

[
φ

ψ

]
=

[
ψ

− δEdis
δφ [φ]

]
,

[
φ(0)
ψ(0)

]
=

[
φ0

0

]
.

• We implement a 4th order Runge–Kutta method to solve
this coupled system.

• Then the evolution of the velocity ψ is given by

ψn+1 = ψn +
1
6
((l1)n + 2(l2)n + 2(l3)n + (l4)n) ,

and the Skyrme field φ evolution is given by

φn+1 = φn +
1
6
((k1)n + 2(k2)n + 2(k3)n + (k4)n) .
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Arrested Newton flow

• The slopes ki , li for 1 ≤ i ≤ 4, with time-step h, for the
Skyrme field φn and the velocity ψn are

(k1)n = hψn, (l1)n = −h δEdis
δφ

[φn] ,

(k2)n = h
(
ψn +

1
2
(l1)n

)
, (l2)n = −h δEdis

δφ

[
φn +

1
2
(k1)n

]
,

(k3)n = h
(
ψn +

1
2
(l2)n

)
, (l3)n = −h δEdis

δφ

[
φn +

1
2
(k2)n

]
,

(k4)n = h (ψn + (l3)n) , (l4)n = −h δEdis
δφ

[φn + (k3)n] .

• Main advantage of ANF: the field will accelerate towards
an energy minimum.

• So that the field does not overshoot, we take out all the
kinetic energy whenever the potential energy is increasing. 25/31



Arrested Newton flow

• The flow then terminates when every component of the
energy gradient δEdis

δφ is zero to within a pre-assigned
tolerance.

• It is essential that we enforce the constraint φ · φ = 1.
• Normally done by including a Lagrange multiplier term

into the Lagrangian.
• To do this numerically we have to pull our target space

back onto S3. This is done by normalizing the Skyrme field
φ each loop, φa → φa√

φ·φ .
• We also need to project out the component of the energy

gradient, and velocity, in the direction of Skyrme field,
δE
δφa

→ δE
δφa

−
(
δE
δφ

· φ
)

φa√
φ · φ

,

ψa → ψa − (ψ · φ) φa√
φ · φ

. 26/31



Skyrmions for charge B ≤ 8

(a) B = 2 : O(2) (b) B = 3 : Td (c) B = 4 : Oh

(d) B = 5 : D2d (e) B = 7 : Yh (f) B = 8 : D4h

Table 1: Constant baryon density isosurface plots of the minimal
energy Skyrmions with massive pions for baryon numbers B ≤ 8.
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Skyrme–Faddeev model

• The Skyrme–Faddeev model involves a map φ : R3 → S2,
which is realized as a 3-vector φ = (φ1, φ2, φ3).

• The static energy of the model is given by

E =
1

32π2
√

2

∫
R3

{
∂iφ · ∂iφ+

1
2
(∂iφ× ∂jφ)

2 + V (φ)

}
d3x,

where the potential term is the standard baby Skyrme
potential, V (φ) = 2m2(1 − φ3).

• Finite energy configurations require

lim
|x|→∞

φ(x) ≡ φ∞ = constant.

• We must select φ∞ from the vacuum manifold of the
model.

• For our choice of potential, we set φ∞ = (0, 0, 1).
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Skyrme–Faddeev model

• This gives us the one-point compactification of space
R3 ∪{∞} ∼= S3.

• Each field can be characterized by the equivalence classes
of the homotopy group π3(S2) = Z.

• The topological charge Q ∈ π3(S2) = Z is the Hopf charge
and finite energy field configurations are referred to as
Hopfions.

• Let F = φ∗ω be the pullback of the area 2-form on the
target 2-sphere to S3.

• Triviality of the second cohomology group of the 3-sphere
implies that F is exact, say F = dA.

• The Hopf charge Q can be expressed as the integral of the
Chern–Simons 3-form over the 3-sphere:

Q =
1

4π2

∫
S2

F ∧ A. 29/31



Skyrme–Faddeev model

• There exists a lower bound on the static energy in terms of
the Hopf charge Q.

• This cannot be attained by a Bogomolny-type argument,
but is based on Sobolev-type inequalities. This was shown
by Vakulenko & Kapitanski to be

E ≥ cQ3/4, where c =

(
3
16

)3/8
.

• As before, we create suitable initial field configurations for
hopfions using rational maps W : S3 → CP1.

• Some example solutions are shown below. These show the
linking structure between two independent points (−1, 0, 0)
and (0, 0,−1) on the target 2-sphere, and the associated
energy density isosurface.

30/31



(a) Q = 8 : K3,2 knot
linking

(b) Q = 8 : K3,2 knot
energy density

(c) Q = 12 : K5,2 knot
linking

(d) Q = 12 : K5,2 knot
energy density

Table 2: Position (blue tube) and linking (red tube) curve for m = 1
Hopfions. These are preimages of the two cylinders defined by
φ3 = −1 + ε and φ1 = −1 + ε, where ε = 0.2.
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