

Numerical Solutions for Skyrme Models

Paul Leask, mmpnl@leeds.ac.uk

May 20, 2021

University of Leeds

Outline

Mathematical framework for Skyrmions

The Skyrme model

Initial configurations

Hedgehog Ansatz

Rational map ansatz

Arrested Newton flow

Skyrme–Faddeev model

Mathematical framework for Skyrmions

- The Skyrme model's natural setting is Riemannian geometry.
- Let (M, g_M) and (N, g_N) be 3-dimensional, orientable and connected Riemannian manifolds.
- A Skyrmion is a topologically non-trivial map $U : M \rightarrow N$.
- The energy functional will be a measure of the extent to which the map U is metric preserving.
- Skyrmions are field configurations that are minimal energy solutions to the associated Euler–Lagrange equations.

Mathematical framework for Skyrmions

- Introduce coordinates p^i on M and U^j on N and orthonormal frame fields m_α on M and n_β on N .
- Represent U by the functions $U^j(p^1, p^2, p^3)$.
- The deformation induced by U at p can be determined by the Jacobian matrix

$$J_{\alpha\beta} = m_\alpha^i \frac{\partial U^j}{\partial p^i} n_{\beta j}.$$

- Geometric distortion is unaffected by rotations in M and isorotations in N .
- In analogy with elasticity theory, we can express the energy of the Skyrme field U in terms of its strain tensor D .

Basic invariants of the strain tensor D

- The strain tensor is defined as $D = JJ^T$.
- This is a 3×3 symmetric, positive-definite matrix with eigenvalues $\lambda_1^2, \lambda_2^2, \lambda_3^2$.
- Basic invariants of D are the coefficients in the characteristic polynomial $\chi_D(g_M) = \det(D - g_M \text{id})$. These are

$$\text{Tr } D = \lambda_1^2 + \lambda_2^2 + \lambda_3^2,$$

$$\frac{1}{2}(\text{Tr } D)^2 - \frac{1}{2} \text{Tr } D^2 = \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2,$$

$$\det D = \lambda_1^2 \lambda_2^2 \lambda_3^2.$$

- The deviation of the eigenvalues of D from unity determines the deformation induced by U . If $D = \text{id}$, then there is no deformation and U is locally an isometry.

Constructing invariants from the strain tensor D

- The simplest invariant is the Dirichlet energy

$$\begin{aligned} E_2 &= \int_M \text{Tr } D \sqrt{\det g_M} \, d^3x \\ &= \int_M (\lambda_1^2 + \lambda_2^2 + \lambda_3^2) \sqrt{\det g_M} \, d^3x, \end{aligned}$$

whose critical points are harmonic functions.

- The second invariant is the Skyrme energy

$$\begin{aligned} E_4 &= \int_M \left(\frac{1}{2} (\text{Tr } D)^2 - \frac{1}{2} \text{Tr } D^2 \right) \sqrt{\det g_M} \, d^3x \\ &= \int_M (\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2) \sqrt{\det g_M} \, d^3x. \end{aligned}$$

Constructing invariants from the strain tensor D

- In the usual Skyrme model, the static energy functional is constructed from both of these invariants:

$$\begin{aligned} E &= \int_M \left(\text{Tr } D + \frac{1}{2}(\text{Tr } D)^2 - \frac{1}{2} \text{Tr } D^2 \right) \sqrt{\det g_M} \, d^3 x \\ &= \int_M (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2) \sqrt{\det g_M} \, d^3 x. \end{aligned}$$

- The third basic invariant actually gives us the topological degree of the map U ,

$$\begin{aligned} B &= \frac{1}{2\pi^2} \int_M \sqrt{\det D} \sqrt{\det g_M} \, d^3 x \\ &= \frac{1}{2\pi^2} \int_M \lambda_1 \lambda_2 \lambda_3 \sqrt{\det g_M} \, d^3 x. \end{aligned}$$

Faddeev–Bogomolny energy bound

- We can construct a lower bound on the energy of a Skyrmion within a given homotopy class by writing the energy E in the form

$$E = \int_M \left((\lambda_1 \pm \lambda_2 \lambda_3)^2 + (\lambda_2 \pm \lambda_3 \lambda_1)^2 + (\lambda_3 \pm \lambda_1 \lambda_2)^2 + 6\lambda_1 \lambda_2 \lambda_3 \right) \sqrt{\det g_M} \, d^3 x,$$

and using the simple inequality

$$(\lambda_1 \pm \lambda_2 \lambda_3)^2 + (\lambda_2 \pm \lambda_3 \lambda_1)^2 + (\lambda_3 \pm \lambda_1 \lambda_2)^2 \geq 0.$$

- This gives us the Faddeev–Bogomolny lower bound on the energy,

$$E \geq 12\pi^2 |B|.$$

The Skyrme model

- In the usual Skyrme model, physical space is $M = \mathbb{R}^3$ and the target is $N = \text{SU}(2)$.
- The static Skyrme model consists of a single scalar field, $U : \mathbb{R}^3 \rightarrow \text{SU}(2)$ given explicitly by

$$U(\mathbf{x}) = \sigma(\mathbf{x})\text{id} + i\boldsymbol{\pi}(\mathbf{x}) \cdot \boldsymbol{\tau},$$

where $\boldsymbol{\pi} = (\pi_1, \pi_2, \pi_3)$ are the pion fields, $\boldsymbol{\tau}$ are the Pauli matrices and σ is the sigma field.

- Nuclei are modelled as topological solitons in a nonlinear field theory of pions.
- Realized as a low energy effective field theory for QCD in the large colour limit, in which nuclei become classical and heavy.

The Skyrme model

- The strain tensor associated to $U : \mathbb{R}^3 \rightarrow \mathrm{SU}(2)$ is

$$D_{ij} = -\frac{1}{2} \mathrm{Tr}(L_i L_j),$$

where the $\mathfrak{su}(2)$ -valued (left) current $L_i = U^\dagger(\partial_i U)$ is the pullback of the Maurer–Cartan 1-form on $\mathrm{SU}(2)$.

- The corresponding static energy functional is

$$E = \int_{\mathbb{R}^3} \left\{ -\frac{1}{2} \mathrm{Tr}(L_i L_i) - \frac{1}{16} \mathrm{Tr}([L_i, L_j][L_i, L_j]) + V(U) \right\} d^3x,$$

where $V(U) = m^2 \mathrm{Tr}(\mathrm{id} - U)$ is the usual pion mass potential.

- The energy E is invariant under translations and rotations in physical space, as well as rotations in isospace, $U \rightarrow A U A^\dagger$ for $A \in \mathrm{SU}(2)$.

The Skyrme model

- We have the nonlinear σ -model constraint $\sigma^2 + \boldsymbol{\pi} \cdot \boldsymbol{\pi} = 1$ and the identification $SU(2) \cong S^3$.
- Finite energy configurations require us to impose the boundary condition $U \rightarrow \text{id}$ as $|\mathbf{x}| \rightarrow \infty$. This gives us the one-point compactification of space $\mathbb{R}^3 \cup \{\infty\} \cong S^3$.
- Topologically, the Skyrme field is a map $U : S^3 \rightarrow S^3$, with winding number $B \in \pi_3(S^3) \cong \mathbb{Z}$.
- The topological charge B is identified with the physical baryon number, with explicit integral form

$$B = -\frac{1}{24\pi^2} \int_{\mathbb{R}^3} \epsilon_{ijk} \text{Tr}(L_i L_j L_k) d^3x.$$

- The minimum energy field configurations for each baryon number B are known as Skyrmions and their energy E is identified with their rest mass.

Derrick's non-existence theorem

- Apply a rescaling of the spatial coordinates $\mathbf{x} \mapsto \lambda \mathbf{x}$.
- The energy terms becomes $e_2 = \frac{E_2}{\lambda}$, $e_4 = \lambda E_4$ and $e_0 = \frac{E_0}{\lambda^3}$.
- Rescaled energy is simply

$$e(\lambda) = \frac{E_2}{\lambda} + \lambda E_4 + \frac{E_0}{\lambda^3}.$$

- λ must minimise $e(\lambda)$ at $\lambda = 1$, which requires $E_4 = E_2 + 3E_0$.
- The terms E_2 & E_0 and E_4 scale in opposite ways, so Skyrmions cannot:
 1. expand to cover all of space,
 2. contract to a localized single point.

The Skyrme model

- For numerics, it is convenient to write the Skyrme field as a 4-vector $U = \phi_\mu e_\mu$, where $\phi_\mu = (\sigma, \pi_j)$ and $e_\mu = (\text{id}, i\tau_j)$, such that $\phi_\mu \phi_\mu = 1$.
- Substituting this into the Skyrme Lagrangian we obtain a non-linear σ -model form,

$$L = \int_{\mathbb{R}^3} \left\{ \partial_i \phi \cdot \partial^i \phi - \frac{1}{2} (\partial_i \phi \times \partial_j \phi) \cdot (\partial^i \phi \times \partial^j \phi) - 2m^2(1 - \sigma) \right\} d^3x.$$

- Then the static energy functional is defined by

$$E = \int_{\mathbb{R}^3} \left\{ \partial_i \phi \cdot \partial_i \phi + \frac{1}{2} (\partial_i \phi \times \partial_j \phi)^2 + 2m^2(1 - \sigma) \right\} d^3x.$$

How to construct Skyrmions

- The basic $B = 1$ Skyrmion is based on a spherical hedgehog ansatz where the radial profile function $f(r)$ is the solution of an ODE.
- To construct higher charge Skyrmions there are a few methods:
 - One is to place $B = 1$ Skyrmions orientated in the attractive channel. The best arrangements are on a subcluster of a bravais lattice, the most favourable being a face-centred cubic (FCC) lattice.
 - Another is to build Skyrme fields using a rational map approximation $S^2 \rightarrow S^2$ and a radial profile $f(r)$.
 - One could also relate Skyrmions to instantons or monopoles.

Ansatz

- The hedgehog field is $U(\mathbf{x}) = \exp(if(r)\hat{\mathbf{x}} \cdot \boldsymbol{\tau})$. In terms of the $\boldsymbol{\pi}$ and σ fields,

$$\sigma = \cos f(r), \quad \boldsymbol{\pi} = \sin f(r)\hat{\mathbf{x}}.$$

These are known as hedgehogs because the pion fields point radially outwards.

- The profile function $f(r)$ must satisfy the boundary conditions $f(\infty) = 0$ and $f(0) = n\pi$ with $n \in \mathbb{Z}$.
- Such a hedgehog solution has baryon number $B = n$ since

$$B = -\frac{1}{2\pi^2} \int_0^\infty \frac{\sin^2 f}{r^2} \frac{df}{dr} 4\pi r^2 dr = \frac{1}{\pi} f(0) = n.$$

Ansatz

- For the hedgehog ansatz, the (massless) static energy is

$$E = 4\pi \int_0^\infty \left[r^2 \left(\frac{df}{dr} \right)^2 + 2 \sin^2 f \left(1 + \left(\frac{df}{dr} \right)^2 \right) + \frac{\sin^4 f}{r^2} \right] dr.$$

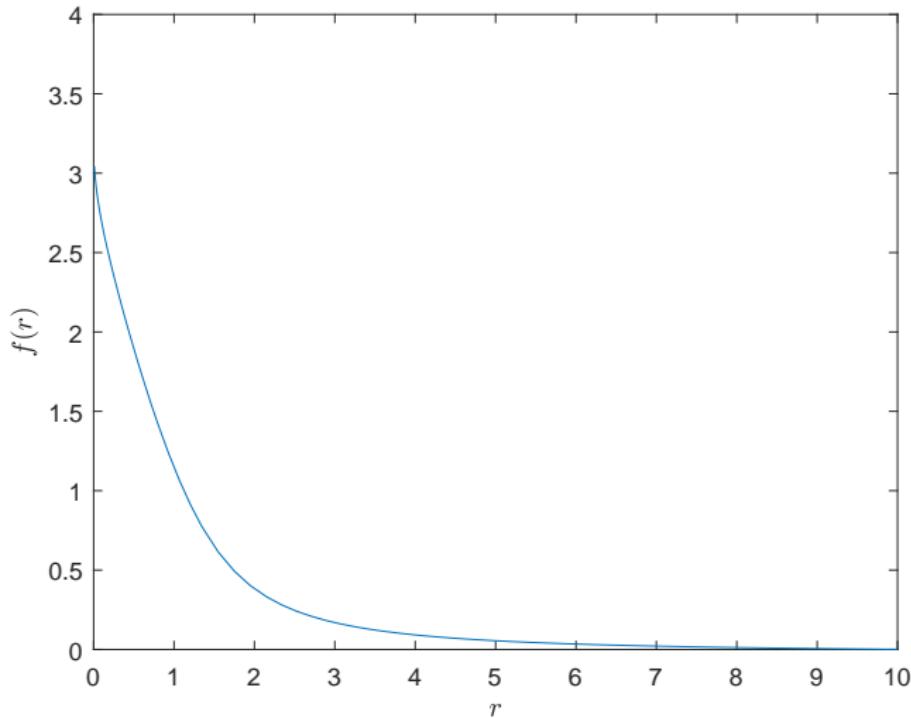
- The corresponding field equations reduce to the second order non-linear ordinary differential equation

$$(r^2 + 2 \sin^2 f) \frac{d^2 f}{dr^2} + 2r \frac{df}{dr} + \sin 2f \left[\left(\frac{df}{dr} \right)^2 - 1 - \frac{\sin^2 f}{r^2} \right] = 0.$$

- This ODE can only be solved numerically and has a unique solution for each B .
- The $B = 1$ Skyrmions has energy $E_1 = 1.232 \times 12\pi^2$, which is greater than the Bogomolny bound, $E_1 > 12\pi^2$.

Ansatz

- Using a shooting method, the profile function $f(r)$ for the $B = 1$ hedgehog ansatz is found to be:



$B = 1$ Skyrmion

- The $B = 1$ Skyrmion is visualised by plotting a constant baryon density isosurface, e.g. $B = 0.2$, and is coloured using the Runge colour sphere.

Figure 1: Constant baryon density isosurface plot of the minimal energy Skyrmion with massive pions for baryon number $B = 1$.

Rational map ansatz

- Rational maps are functions from $S^2 \rightarrow S^2$, whereas as the Skyrme field is a map $\mathbb{R}^3 \rightarrow S^3$.
- Identify the rational map target S^2 with spheres of constant latitude on S^3 , and the rational map domain S^2 with spheres in \mathbb{R}^3 of radius r .
- Using polar coordinates for \mathbb{R}^3 , $z = \tan(\theta/2) \exp(i\varphi)$, with radius r , the rational map ansatz is

$$U(r, z) = \exp \left[\frac{if(r)}{1 + |R|^2} \begin{pmatrix} 1 - |R|^2 & 2\bar{R} \\ 2R & |R|^2 - 1 \end{pmatrix} \right],$$

where $f(r)$ is a radial profile function with $f(0) = \pi$ and $f(\infty) = 0$, and $R(z) = p(z)/q(z)$ is a rational map of degree $B = \max(\deg p, \deg q)$.

Rational map ansatz

- Substituting the rational map ansatz into the static energy functional yields

$$E = 4\pi \int_0^\infty r^2 \left\{ \left(\frac{df}{dr} \right)^2 + 2B \sin^2 f \left(\left(\frac{df}{dr} \right)^2 + 1 \right) \right. \\ \left. + \mathcal{I} \frac{\sin^4 f}{r^2} + 2m^2 (\cos f - 1) \right\} dr,$$

where \mathcal{I} is the purely angular integral to be minimised for choice of rational map R :

$$\mathcal{I} = \frac{1}{4\pi} \int \left(\frac{1 + |z|^2}{1 + |R|^2} \left| \frac{dR}{dz} \right| \right)^4 \frac{2idz d\bar{z}}{(1 + |z|^2)^2}.$$

- Optimising \mathcal{I} and the profile function $f(r)$ gives approximate Skyrmions, but further numerical relaxation is required to find true Skyrmions.

Rational map ansatz

- Below are some of the well known rational maps of high symmetry which we use as initial configurations for the numerical relaxation:

B	$R(z)$	Symmetry
1	$R(z) = z$	$O(3)$
2	$R(z) = z^2$	$O(2) \times \mathbb{Z}$
3	$R(z) = \frac{z^3 - \sqrt{3}iz}{\sqrt{3}iz^2 - 1}$	T_d
4	$R(z) = \frac{z^4 + 2\sqrt{3}iz^2 + 1}{z^4 - 2\sqrt{3}iz^2 + 1}$	O_h
5	$R(z) = \frac{z(z^4 + bz^2 + a)}{az^4 - bz^2 + 1}$	D_{2d}
6	$R(z) = \frac{z^4 - a}{z(az^4 + 1)}$	D_{4d}
7	$R(z) = \frac{bz^6 - 7z^4 - bz^2 - 1}{z(z^6 + bz^4 + 7z^2 - b)}$	Y_h

- The Skyrmions are visualised by plotting a constant baryon density isosurface, e.g. $B = 0.2$, and are coloured using the Runge colour sphere.

Arrested Newton flow

- To find minima of the static energy, we must numerically relax the Skyrme field.
- The numerical methods are carried out on a $N_1 \times N_2 \times N_3$ grid with lattice spacings $\Delta x_1, \Delta x_2, \Delta x_3$.
- The Skyrme energy is then discretised using a 4th order, 5-point stencil, central finite-difference scheme.
- The first order and second order spatial derivatives with respect to the local coordinate x_1 , with the other derivatives defined analogously, are given respectively by

$$\frac{\partial \phi_{a_{i,j,k}}}{\partial x_1} = \frac{\frac{1}{12}\phi_{a_{i-2,j,k}} - \frac{2}{3}\phi_{a_{i-1,j,k}} + \frac{2}{3}\phi_{a_{i+1,j,k}} - \frac{1}{12}\phi_{a_{i+2,j,k}}}{\Delta x_1},$$

$$\frac{\partial^2 \phi_{a_{i,j,k}}}{\partial x_1^2} = \frac{-\frac{1}{12}\phi_{a_{i-2,j,k}} + \frac{4}{3}\phi_{a_{i-1,j,k}} - \frac{5}{2}\phi_{a_{i,j,k}} + \frac{4}{3}\phi_{a_{i+1,j,k}} - \frac{1}{12}\phi_{a_{i+2,j,k}}}{(\Delta x_1)^2}.$$

Arrested Newton flow

- This yields a discrete approximation $E_{\text{dis}}[\phi]$ to the static energy functional $E[\phi]$, which we can regard as a function $E_{\text{dis}} : \mathcal{C} \rightarrow \mathbb{R}$.
- The discretised configuration space is the manifold $\mathcal{C} = (S^3)^{N_1 N_2 N_3} \subset \mathbb{R}^{4 N_1 N_2 N_3}$.
- We solve Newton's equations of motion for a particle on the discretised configuration space \mathcal{C} with potential energy E_{dis} .
- Explicitly, we are solving the system of 2nd order ODEs

$$\ddot{\phi}(t) = -\frac{\delta E_{\text{dis}}}{\delta \phi}[\phi], \quad \phi(0) = \phi_0, \quad (1)$$

with initial velocity $\dot{\phi}(0) = \mathbf{0}$.

Arrested Newton flow

- Setting $\psi(t) = \dot{\phi}$ as the velocity with $\psi(0) = \dot{\phi}(0) = \mathbf{0}$ reduces the problem to the coupled system of 1st order ODEs

$$\frac{d}{dt} \begin{bmatrix} \phi \\ \psi \end{bmatrix} = \begin{bmatrix} \psi \\ -\frac{\delta E_{\text{dis}}}{\delta \phi}[\phi] \end{bmatrix}, \quad \begin{bmatrix} \phi(0) \\ \psi(0) \end{bmatrix} = \begin{bmatrix} \phi_0 \\ 0 \end{bmatrix}.$$

- We implement a 4th order Runge–Kutta method to solve this coupled system.
- Then the evolution of the velocity ψ is given by

$$\psi_{n+1} = \psi_n + \frac{1}{6} ((l_1)_n + 2(l_2)_n + 2(l_3)_n + (l_4)_n),$$

and the Skyrme field ϕ evolution is given by

$$\phi_{n+1} = \phi_n + \frac{1}{6} ((k_1)_n + 2(k_2)_n + 2(k_3)_n + (k_4)_n).$$

Arrested Newton flow

- The slopes $\mathbf{k}_i, \mathbf{l}_i$ for $1 \leq i \leq 4$, with time-step h , for the Skyrme field ϕ_n and the velocity ψ_n are

$$(\mathbf{k}_1)_n = h \psi_n, \quad (\mathbf{l}_1)_n = -h \frac{\delta E_{\text{dis}}}{\delta \phi} [\phi_n],$$

$$(\mathbf{k}_2)_n = h \left(\psi_n + \frac{1}{2} (\mathbf{l}_1)_n \right), \quad (\mathbf{l}_2)_n = -h \frac{\delta E_{\text{dis}}}{\delta \phi} \left[\phi_n + \frac{1}{2} (\mathbf{k}_1)_n \right],$$

$$(\mathbf{k}_3)_n = h \left(\psi_n + \frac{1}{2} (\mathbf{l}_2)_n \right), \quad (\mathbf{l}_3)_n = -h \frac{\delta E_{\text{dis}}}{\delta \phi} \left[\phi_n + \frac{1}{2} (\mathbf{k}_2)_n \right],$$

$$(\mathbf{k}_4)_n = h (\psi_n + (\mathbf{l}_3)_n), \quad (\mathbf{l}_4)_n = -h \frac{\delta E_{\text{dis}}}{\delta \phi} [\phi_n + (\mathbf{k}_3)_n].$$

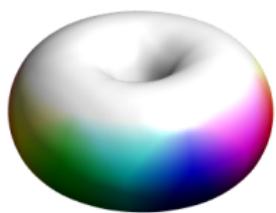
- Main advantage of ANF: the field will accelerate towards an energy minimum.
- So that the field does not overshoot, we take out all the kinetic energy whenever the potential energy is increasing.

Arrested Newton flow

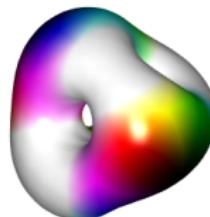
- The flow then terminates when every component of the energy gradient $\frac{\delta E_{\text{dis}}}{\delta \phi}$ is zero to within a pre-assigned tolerance.
- It is essential that we enforce the constraint $\phi \cdot \phi = 1$.
- Normally done by including a Lagrange multiplier term into the Lagrangian.
- To do this numerically we have to pull our target space back onto S^3 . This is done by normalizing the Skyrme field ϕ each loop, $\phi_a \rightarrow \frac{\phi_a}{\sqrt{\phi \cdot \phi}}$.
- We also need to project out the component of the energy gradient, and velocity, in the direction of Skyrme field,

$$\frac{\delta \mathcal{E}}{\delta \phi_a} \rightarrow \frac{\delta \mathcal{E}}{\delta \phi_a} - \left(\frac{\delta \mathcal{E}}{\delta \phi} \cdot \phi \right) \frac{\phi_a}{\sqrt{\phi \cdot \phi}},$$
$$\psi_a \rightarrow \psi_a - (\psi \cdot \phi) \frac{\phi_a}{\sqrt{\phi \cdot \phi}}.$$

Skyrmions for charge $B \leq 8$

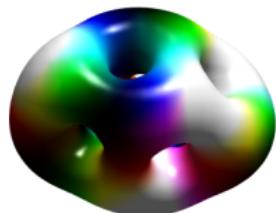


(a) $B = 2 : O(2)$



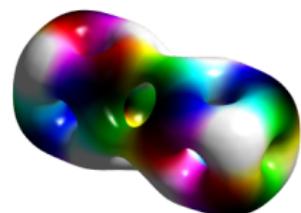
(b) $B = 3 : T_d$

(c) $B = 4 : O_h$



(d) $B = 5 : D_{2d}$

(e) $B = 7 : Y_h$



(f) $B = 8 : D_{4h}$

Table 1: Constant baryon density isosurface plots of the minimal energy Skyrmions with massive pions for baryon numbers $B \leq 8$.

Skyrme–Faddeev model

- The Skyrme–Faddeev model involves a map $\phi : \mathbb{R}^3 \rightarrow S^2$, which is realized as a 3-vector $\phi = (\phi_1, \phi_2, \phi_3)$.
- The static energy of the model is given by

$$E = \frac{1}{32\pi^2\sqrt{2}} \int_{\mathbb{R}^3} \left\{ \partial_i \phi \cdot \partial_i \phi + \frac{1}{2} (\partial_i \phi \times \partial_j \phi)^2 + V(\phi) \right\} d^3x,$$

where the potential term is the standard baby Skyrme potential, $V(\phi) = 2m^2(1 - \phi_3)$.

- Finite energy configurations require

$$\lim_{|x| \rightarrow \infty} \phi(x) \equiv \phi_\infty = \text{constant}.$$

- We must select ϕ_∞ from the vacuum manifold of the model.
- For our choice of potential, we set $\phi_\infty = (0, 0, 1)$.

Skyrme–Faddeev model

- This gives us the one-point compactification of space $\mathbb{R}^3 \cup \{\infty\} \cong S^3$.
- Each field can be characterized by the equivalence classes of the homotopy group $\pi_3(S^2) = \mathbb{Z}$.
- The topological charge $Q \in \pi_3(S^2) = \mathbb{Z}$ is the Hopf charge and finite energy field configurations are referred to as Hopfions.
- Let $F = \phi^* \omega$ be the pullback of the area 2-form on the target 2-sphere to S^3 .
- Triviality of the second cohomology group of the 3-sphere implies that F is exact, say $F = dA$.
- The Hopf charge Q can be expressed as the integral of the Chern–Simons 3-form over the 3-sphere:

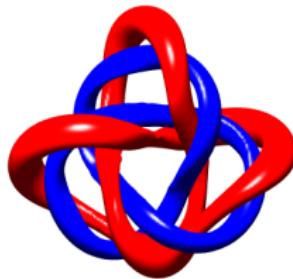
$$Q = \frac{1}{4\pi^2} \int_{S^2} F \wedge A.$$

Skyrme–Faddeev model

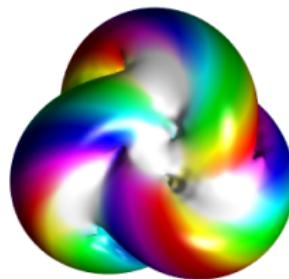
- There exists a lower bound on the static energy in terms of the Hopf charge Q .
- This cannot be attained by a Bogomolny-type argument, but is based on Sobolev-type inequalities. This was shown by Vakulenko & Kapitanski to be

$$E \geq cQ^{3/4}, \quad \text{where } c = \left(\frac{3}{16}\right)^{3/8}.$$

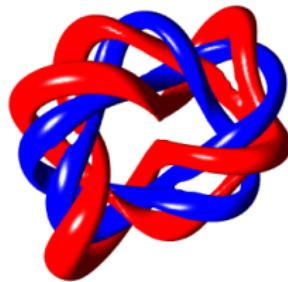
- As before, we create suitable initial field configurations for hopfions using rational maps $W : S^3 \rightarrow \mathbb{CP}^1$.
- Some example solutions are shown below. These show the linking structure between two independent points $(-1, 0, 0)$ and $(0, 0, -1)$ on the target 2-sphere, and the associated energy density isosurface.



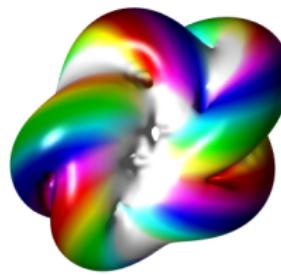
(a) $Q = 8 : \mathcal{K}_{3,2}$ knot linking



(b) $Q = 8 : \mathcal{K}_{3,2}$ knot energy density



(c) $Q = 12 : \mathcal{K}_{5,2}$ knot linking



(d) $Q = 12 : \mathcal{K}_{5,2}$ knot energy density

Table 2: Position (blue tube) and linking (red tube) curve for $m = 1$ Hopfions. These are preimages of the two cylinders defined by $\phi_3 = -1 + \epsilon$ and $\phi_1 = -1 + \epsilon$, where $\epsilon = 0.2$.