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Solitons in the presence of vector mesons

Large Nc-limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but

vector as well

Can identify vector mesons with gauge multiplets of a minimally broken

SU(2)L ⊗ SU(2)R ⊗ U(1)V gauge model [Phys. Rev. Lett. 56, 1035 (1986)]
The ω-meson can be introduced by gauging the U(1) vector symmetry, and it couples
anomalously through the gauged Wess-Zumino term

Skyrme stabilizing term related to the effects of the ρ-meson field in the mρ → ∞ limit

Sextic term represents mω → ∞ limit of the ω-meson [Phys. Lett. B 145, 101–106 (1985)]

Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite

mass vector mesons

Solitons stabilized by ω-mesons

Non-linear σ-model (NLσM) coupled to an ω-meson [Phys. Lett. B 137, 251–256 (1984)]
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Wess-Zumino interaction term βωωµBµ describes coupling of the ω-meson to three pions

Coupling constant βω related to the ω → π+π−π0 decay rate

Lagrangian is singular and static Lagrangian not bounded below⇒ non-trivial extremization

In every Yang–Mills theory, the canonical momentum conjugate to the temporal component

of the gauge field vanishes identically [Nucl. Phys. A 526, 453–478 (1991)]: p0 = ∂L
∂(∂0ω0)

= 0
Constitutes a primary constraint of the theory

Dirac–Bergmann algorithm (singular Lagrangian → constrained Hamiltonian system):

conservation of this primary constraint in time results in a secondary constraint of the form
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Can be solved and used to eliminate the constrained degree of freedom, ω0

Geometric formulation of the ω-NLσMmodel

Pion field: ϕ : (M, g) → (G, h)
M an oriented Riemannian manifold, and G a compact Riemannian manifold (normally
SU(2))
Omega meson ω = ωµdxµ ∈ Ω1(M), ω0 ∈ C∞(M)
Volume form Ξ = volh/|G| ⇒ B0 = ∗gϕ∗Ξ
Statics: constrained variational problem [J. High Energ. Phys. 07, 184 (2020)]
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Critical points of this are solutions of the Euler–Lagrange equations associated to the

unconstrained Lagrangian L
The constraint can be solved by a non-linear conjugate gradient method

Varying the metric

Consider the base space to be the 3-torus

(R3/Λ, gEuc), Λ =
{

n1 ~X1 + n2 ~X2 + n3 ~X3 : ni ∈ Z
}

Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism

F : (T3, g) → (R3/Λ, gEuc), x1 ~X1 + x2 ~X2 + x3 ~X3

The metric on T3 ≡ R3/Z3 is the pullback g = F ∗gEuc = gijdxidxj, gij = ~Xi · ~Xj

(T3, g) is equivalent to (R3/Λ, gEuc)
Vary metric gs with g0 = F ∗gEuc ⇐⇒ vary lattice Λs with Λ0 = Λ
Energy minimized over variations of g ⇐⇒ optimal Λ� [Phys. Rev. D 105, 025010 (2022)]

ω-NLσM stress tensor

To determine crystalline phases, we need to compute the stress tensor

Given a smooth one-parameter family of variations (ϕs, gs), soliton crystals are critical points

of the energy E(ϕ, g), that is solutions of [Phys. Lett. B 855, 138842 (2024)]
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S(ϕ, g) ∈ Γ(�2T ∗T3) is the stress tensor and Φ ∈ Γ(ϕ−1TSU(2)) the tension field of ϕ

The stress-energy tensor S = Sijdxidxj associated to the energy
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is the section of Sym2(T ∗M) given by [J. High Energ. Phys. 06, 116 (2024)]]
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Coincides with stress tensor of the unconstrained problem

Massive soliton crystals

For fixed Skyrme L024-field ϕ, there exists a unique critical point of E(ϕ, g) w.r.t. variations
of g (generalizes to L0246-model) [J. Math. Phys. 64, 103503 (2023)]

Four crystals were found with Bcell = 4: the ϕ1/2, ϕα, ϕchain and ϕmultiwall crystals

From ϕ1/2, the other three crystals can be constructed by applying a chiral SO(4)
transformation Q ∈ SO(4), such that ϕ = Qϕ1/2, and minimizing E(ϕ, g) w.r.t. variations of
ϕ and g
These are
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These four crystals were also found in the ω-NLσM model, with the ground state
configuration dependent on the free parameters of the theory

Related to symmetric scattering states of the B = 4 α-particle [Phys. Lett. B 391, 150–156

(1997)]

Figure 1. The E/B per unit cell of soliton crystals as a function of cell volume in the massive Skyrme model

Bethe–Weizsäcker semi-empirical mass formula

Can use soliton crystals to estimate coefficients in the Bethe–Weizsäcker SEMF

Eb = aV B − aSB2/3 − aC
Z(Z − 1)

B1/3 − aA
(N − Z)2

B
+ δ(N, Z),

{
aV ' 15.7 − 16.0MeV,

aS ' 17.3 − 18.4MeV

Method: approach the SEMF using α-particle approximation with n3 α-particles
Energy of a B = 4n3 chunk in the α-particle approximation:
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Only need to compute the nucleon mass E1, crystal energy Eα
crystal and the energy of a

single face of an α-particle Eα
face

Previous results for SC1/2 crystal in the massless L24-Skyrme model: aV = 136MeV,
aS = 320MeV [Nucl. Phys. A 596, 611–630 (1996)]

Our calculations for the ω-NLσM model: aV = 15.6MeV, aS = 18.6MeV

Figure 2. Plot of the Bethe–Weizsäcker SEMF from the α-particle approximation for the ω-NLσM model.

Compressibility of solitonic matter

Energy of isospin symmetric nuclear matter [Phys. Rev. D 109, 056013 (2024)]
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, K0/E0 ≈ 0.260

Approximate dense nuclear matter as a large extended crystalline configuration composed

of N unit cells

Each unit cell has baryon number Bcell and volume Vcell
Baryon density is simply nB = NBcell/(NVcell) = Bcell/Vcell
In the thermodynamic limit N → ∞, E(nB)/B → Ecell/Bcell
Ecell is just the classical static mass of a soliton crystal → E0 = Ecell(n0)/Bcell
Can consider Ecell(nB) by varying the baryon density nB or, equivalently, the unit cell

volume Vcell
The compression modulus is thus
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Fixed density variations requires replacing Sij by its projection Sij − 1
Trg(g)Sklg

klgij

Previous results for SC1/2 crystal K0/E0 ≥ 1 [Phys. Rev. D 90, 045003 (2014)]

Ground state crystal with the lowest B.E. coupling constant: multiwall with cω = 14.34
We find E0 = 917MeV and K0 = 370MeV ⇒ K0/E0 = 0.403
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