

Nuclear matter as a crystal of topological solitons

 Derek Harland¹ Miguel Huidobro² Paul Leask^{1,3} Carlos Naya⁴ Martin Speight¹ Andrzej Wereszczynski⁵
¹University of Leeds

²Universidad de Santiago de Compostela

³KTH Royal Institute of Technology

⁴Universidad de Alcalá

⁵Jagiellonian University.

Solitons in the presence of vector mesons

- Large N_c -limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but vector as well
- Can identify vector mesons with gauge multiplets of a minimally broken $SU(2)_L \otimes SU(2)_R \otimes U(1)_V$ gauge model [Phys. Rev. Lett. 56, 1035 (1986)]
- The ω -meson can be introduced by gauging the $U(1)$ vector symmetry, and it couples anomalously through the gauged Wess-Zumino term
- Skyrme stabilizing term related to the effects of the ρ -meson field in the $m_\rho \rightarrow \infty$ limit
- Sextic term represents $m_\omega \rightarrow \infty$ limit of the ω -meson [Phys. Lett. B 145, 101–106 (1985)]
- Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite mass vector mesons

Solitons stabilized by ω -mesons

- Non-linear σ -model (NL σ M) coupled to an ω -meson [Phys. Lett. B 137, 251–256 (1984)]
- $\mathcal{L} = -\frac{1}{8h^3} F_\pi^2 m_\pi^2 \text{Tr}(\text{Id}_2 - \varphi) - \frac{F_\pi^2}{16h} \eta^{\mu\nu} \text{Tr}(L_\mu L_\nu) + \frac{m_\omega^2}{2h^3} \eta^{\mu\nu} \omega_\mu \omega_\nu - \frac{1}{4h} \eta^{\mu\alpha} \eta^{\nu\beta} \omega_{\mu\nu} \omega_{\alpha\beta} + \beta_\omega \omega_\mu B^\mu$
- Wess-Zumino interaction term $\beta_\omega \omega_\mu B^\mu$ describes coupling of the ω -meson to three pions
- Coupling constant β_ω related to the $\omega \rightarrow \pi^+ \pi^- \pi^0$ decay rate
- Lagrangian is **singular** and static Lagrangian not bounded below \Rightarrow non-trivial extremization
- In every Yang–Mills theory, the canonical momentum conjugate to the temporal component of the gauge field vanishes identically [Nucl. Phys. A 526, 453–478 (1991)]: $p_0 = \frac{\partial \mathcal{L}}{\partial(\partial_0 \omega_0)} = 0$
- Constitutes a primary constraint of the theory
- Dirac–Bergmann algorithm** (singular Lagrangian \rightarrow constrained Hamiltonian system): conservation of this primary constraint in time results in a secondary constraint of the form

$$\beta_\omega \mathcal{B}_0 + m_\omega^2 \omega_0 - \partial_\mu p_\mu = 0 \xrightarrow{\text{statics}} (-\nabla^2 + m_\omega^2) \omega_0 = -\beta_\omega \mathcal{B}_0$$

- Can be solved and used to eliminate the constrained degree of freedom, ω_0

Geometric formulation of the ω -NL σ M model

- Pion field: $\varphi : (M, g) \rightarrow (G, h)$
- M an oriented Riemannian manifold, and G a compact Riemannian manifold (normally $SU(2)$)
- Omega meson $\omega = \omega_\mu dx^\mu \in \Omega^1(M)$, $\omega_0 \in C^\infty(M)$
- Volume form $\Xi = \text{vol}_h/|G| \Rightarrow \mathcal{B}_0 = {}^*g \varphi^* \Xi$
- Statics: constrained variational problem [J. High Energ. Phys. 07, 184 (2020)]

$$E(\varphi, g) = \int_M \left(\frac{1}{8} |\text{d}\varphi|^2 + \frac{1}{4} (V \circ \varphi) + \frac{1}{2} |\text{d}\omega_0|^2 + \frac{1}{2} \omega_0^2 \right) \text{vol}_g \geq 0,$$

subject to the constraint $(\Delta_g + 1) \omega_0 = -c_\omega * \varphi^* \Xi$, $c_\omega = \frac{m_\omega \beta_\omega}{F_\pi}$

- Critical points of this are solutions of the Euler–Lagrange equations associated to the unconstrained Lagrangian \mathcal{L}
- The constraint can be solved by a non-linear conjugate gradient method

Varying the metric

- Consider the base space to be the 3-torus
- $(\mathbb{R}^3/\Lambda, g_{\text{Euc}})$, $\Lambda = \{n_1 \vec{X}_1 + n_2 \vec{X}_2 + n_3 \vec{X}_3 : n_i \in \mathbb{Z}\}$
- Key idea [Comm. Math. Phys. 332, 355–377 (2014)]: Identify all 3-tori via diffeomorphism $F : (\mathbb{T}^3, g) \rightarrow (\mathbb{R}^3/\Lambda, g_{\text{Euc}})$, $x_1 \vec{X}_1 + x_2 \vec{X}_2 + x_3 \vec{X}_3$
- The metric on $\mathbb{T}^3 \equiv \mathbb{R}^3/\mathbb{Z}^3$ is the pullback $g = F^* g_{\text{Euc}} = g_{ij} dx^i dx^j$, $g_{ij} = \vec{X}_i \cdot \vec{X}_j$
- (\mathbb{T}^3, g) is equivalent to $(\mathbb{R}^3/\Lambda, g_{\text{Euc}})$
- Vary metric g_s with $g_0 = F^* g_{\text{Euc}}$ \iff vary lattice Λ_s with $\Lambda_0 = \Lambda$
- Energy minimized over variations of $g \iff$ optimal Λ_ϕ [Phys. Rev. D 105, 025010 (2022)]

ω -NL σ M stress tensor

- To determine **crystalline phases**, we need to compute the **stress tensor**
- Given a smooth one-parameter family of variations (φ_s, g_s) , soliton crystals are critical points of the energy $E(\varphi, g)$, that is solutions of [Phys. Lett. B 855, 138842 (2024)]

$$\frac{d}{ds} E(\varphi_s, g_s) \Big|_{s=0} = \int_{\mathbb{T}^3} d^3x \sqrt{g} (\Phi_A(\varphi, g) \dot{\varphi}_A + S_{ij}(\varphi, g) \dot{g}_{kl} g^{kl}) = 0$$

- $S(\varphi, g) \in \Gamma(\odot^2 T^* \mathbb{T}^3)$ is the stress tensor and $\Phi \in \Gamma(\varphi^{-1} T \text{SU}(2))$ the tension field of φ
- The stress-energy tensor $S = S_{ij} dx^i dx^j$ associated to the energy

$$E(\varphi, g) = \int_M \left(\frac{1}{8} |\text{d}\varphi|^2 + \frac{1}{4} (V \circ \varphi) + \frac{1}{2} |\text{d}\omega_0|^2 + \frac{1}{2} \omega_0^2 \right) \text{vol}_g,$$

subject to the constraint

$$(\Delta_g + 1) \omega_0 = -c_\omega * \varphi^* \Xi,$$

is the section of $\text{Sym}^2(T^* M)$ given by [J. High Energ. Phys. 06, 116 (2024)]

$$S(\varphi, g) = \left(\frac{1}{16} |\text{d}\varphi|^2 + \frac{1}{8} (V \circ \varphi) - \frac{1}{4} |\text{d}\omega_0|^2 - \frac{1}{4} \omega_0^2 \right) g - \left(\frac{1}{8} \varphi^* h - \frac{1}{2} \text{d}\omega_0 \otimes \text{d}\omega_0 \right)$$

- Coincides with stress tensor of the unconstrained problem

Massive soliton crystals

- For fixed Skyrme \mathcal{L}_{024} -field φ , there **exists a unique critical point** of $E(\varphi, g)$ w.r.t. variations of g (generalizes to \mathcal{L}_{0246} -model) [J. Math. Phys. 64, 103503 (2023)]
- Four crystals were found with $B_{\text{cell}} = 4$: the $\varphi_{1/2}$, φ_α , φ_{chain} and $\varphi_{\text{multiwall}}$ crystals
- From $\varphi_{1/2}$, the other three crystals can be constructed by applying a chiral $\text{SO}(4)$ transformation $Q \in \text{SO}(4)$, such that $\varphi = Q \varphi_{1/2}$, and minimizing $E(\varphi, g)$ w.r.t. variations of φ and g
- These are

$$Q \in \left\{ \text{Id}_4, \underbrace{\left(\begin{array}{c} (0, 1, 1, 1)/\sqrt{3} \\ * \end{array} \right)}_{Q_\alpha}, \underbrace{\left(\begin{array}{c} (0, 0, 0, 1) \\ * \end{array} \right)}_{Q_{\text{multiwall}}}, \underbrace{\left(\begin{array}{c} (0, 0, 1, 1)/\sqrt{2} \\ * \end{array} \right)}_{Q_{\text{chain}}} \right\}$$

- These four crystals were also found in the ω -NL σ M model, with the ground state configuration dependent on the free parameters of the theory
- Related to symmetric scattering states of the $B = 4$ α -particle [Phys. Lett. B 391, 150–156 (1997)]

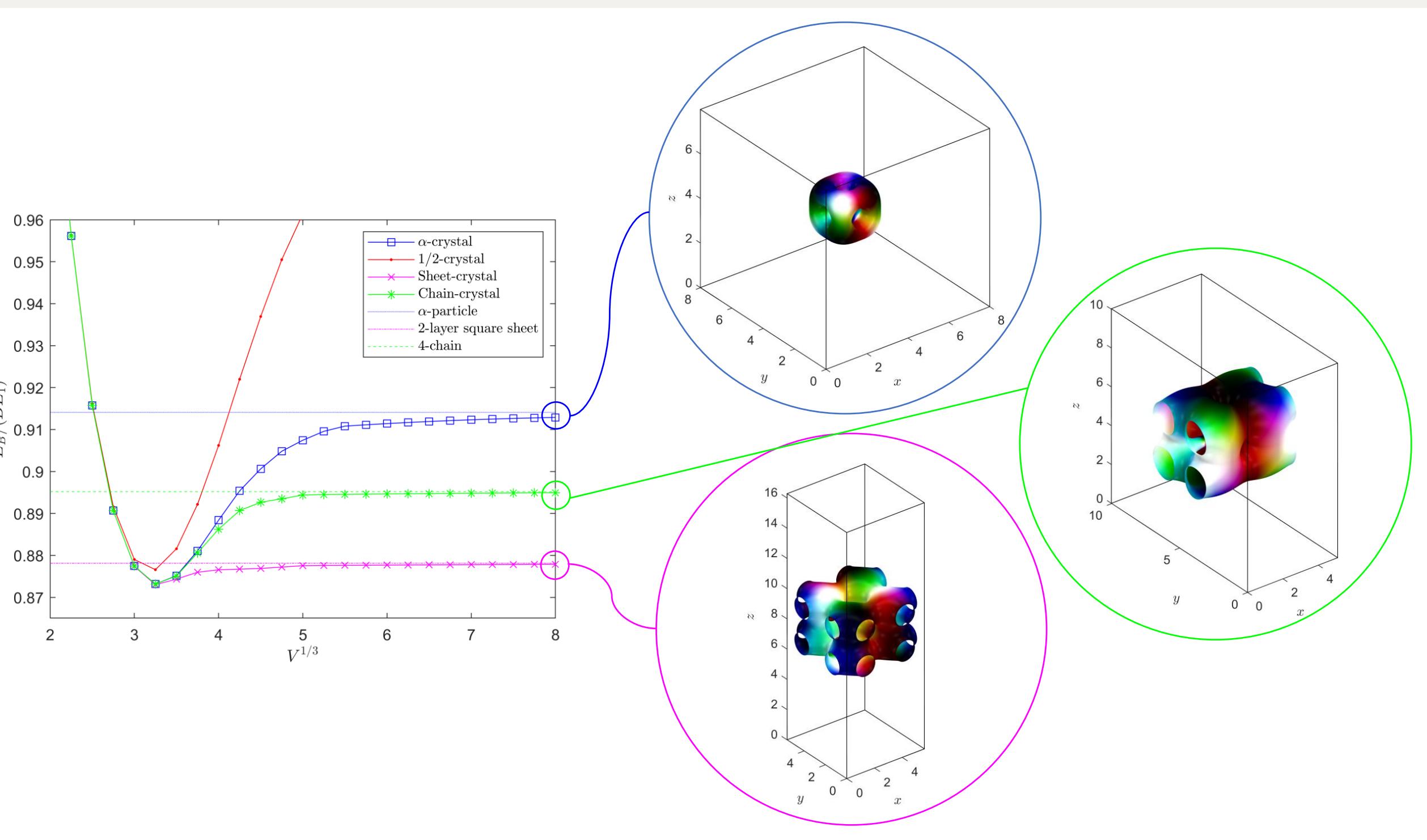


Figure 1. The E/B per unit cell of soliton crystals as a function of cell volume in the massive Skyrme model

Bethe–Weizsäcker semi-empirical mass formula

- Can use soliton crystals to estimate coefficients in the Bethe–Weizsäcker SEMF
- $E_b = a_V B - a_S B^{2/3} - a_C \frac{Z(Z-1)}{B^{1/3}} - a_A \frac{(N-Z)^2}{B} + \delta(N, Z)$, $\begin{cases} a_V \simeq 15.7 - 16.0 \text{ MeV}, \\ a_S \simeq 17.3 - 18.4 \text{ MeV} \end{cases}$
- Method: approach the SEMF using α -particle approximation with n^3 α -particles
- Energy of a $B = 4n^3$ chunk in the α -particle approximation:

$$E(B) = \frac{E_{\text{crystal}}^{\alpha}}{4} B + E_S^{\text{chunk}}, \quad E_S^{\text{chunk}} = 6n^2 E_{\text{face}}^{\alpha} = \frac{6E_{\text{face}}^{\alpha}}{4^{2/3}} B^{2/3}$$

- Classical binding energy of an isospin symmetric chunk:

$$E_b = BE_1 - E(B) = \left(E_1 - \frac{E_{\text{crystal}}^{\alpha}}{4} \right) B - \frac{3E_{\text{face}}^{\alpha}}{\sqrt[3]{2}} B^{2/3} \Rightarrow \begin{cases} a_V = E_1 - \frac{1}{4} E_{\text{crystal}}^{\alpha}, \\ a_S = \frac{3}{\sqrt[3]{2}} E_{\text{face}}^{\alpha} \end{cases}$$

- Only need to compute the nucleon mass E_1 , crystal energy $E_{\text{crystal}}^{\alpha}$ and the energy of a single face of an α -particle E_{face}^{α}
- Previous results for $\text{SC}_{1/2}$ crystal in the massless \mathcal{L}_{24} -Skyrme model: $a_V = 136 \text{ MeV}$, $a_S = 320 \text{ MeV}$ [Nucl. Phys. A 596, 611–630 (1996)]
- Our calculations for the ω -NL σ M model: $a_V = 15.6 \text{ MeV}$, $a_S = 18.6 \text{ MeV}$

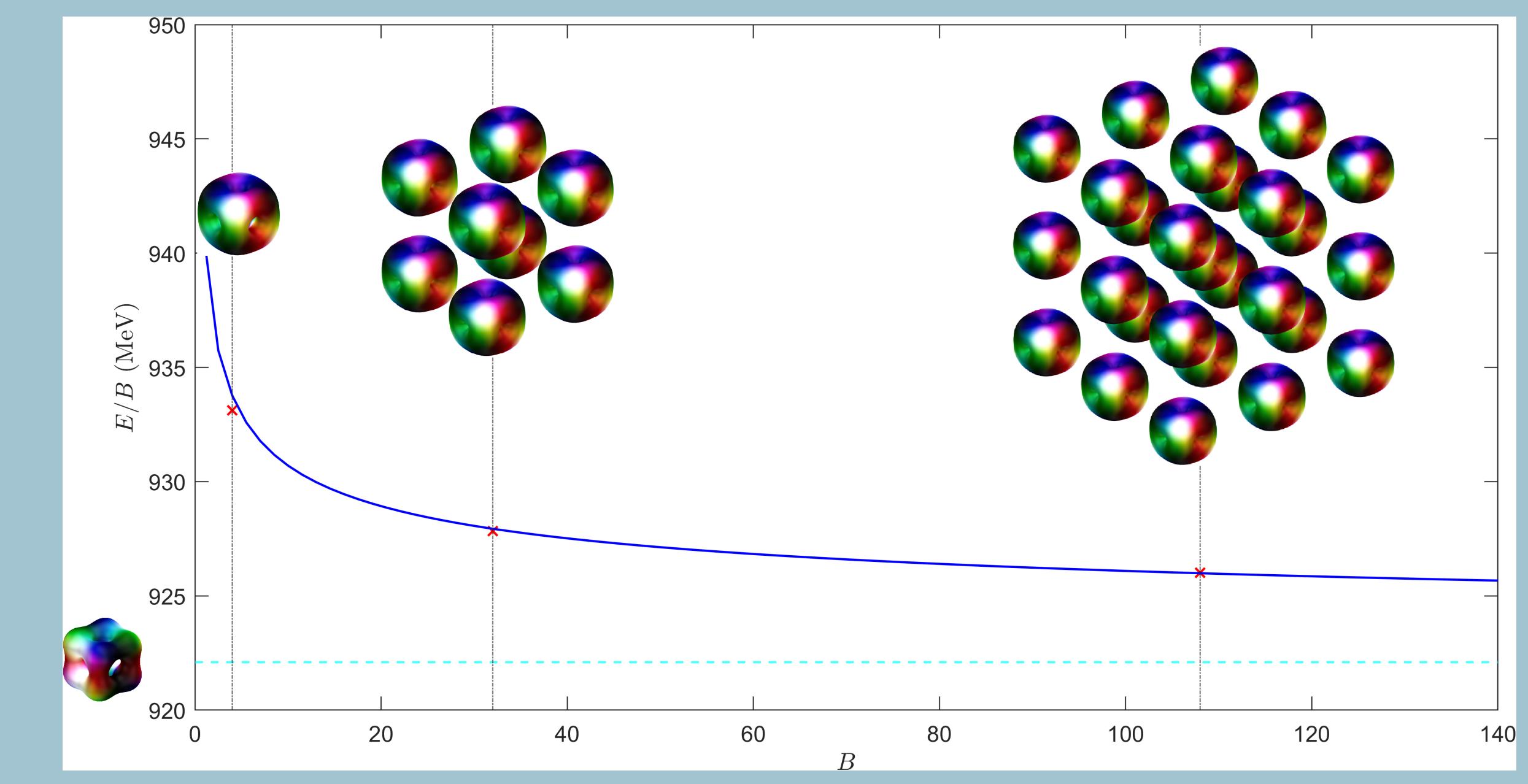


Figure 2. Plot of the Bethe–Weizsäcker SEMF from the α -particle approximation for the ω -NL σ M model.

Compressibility of solitonic matter

- Energy of isospin symmetric nuclear matter [Phys. Rev. D 109, 056013 (2024)]
- $E(n_B)/B = E_0 + \frac{1}{2} K_0 \frac{(n_B - n_0)^2}{9n_0^2} + \mathcal{O}((n_B - n_0)^3)$, $K_0/E_0 \approx 0.260$
- Approximate dense nuclear matter as a large extended crystalline configuration composed of N unit cells
- Each unit cell has baryon number B_{cell} and volume V_{cell}
- Baryon density is simply $n_B = N B_{\text{cell}} / (N V_{\text{cell}}) = B_{\text{cell}} / V_{\text{cell}}$
- In the thermodynamic limit $N \rightarrow \infty$, $E(n_B)/B \rightarrow E_{\text{cell}}/B_{\text{cell}}$
- E_{cell} is just the classical **static mass** of a soliton crystal $\rightarrow E_0 = E_{\text{cell}}(n_0)/B_{\text{cell}}$
- Can consider $E_{\text{cell}}(n_B)$ by varying the baryon density n_B or, equivalently, the unit cell volume V_{cell}
- The compression modulus is thus

$$K_0 = \frac{9n_0^2}{B_{\text{cell}}} \frac{\partial^2 E_{\text{cell}}}{\partial n_B^2} \Big|_{n_B=n_0} = \frac{9V_0^2}{B_{\text{cell}}} \frac{\partial^2 E_{\text{cell}}}{\partial V_{\text{cell}}^2} \Big|_{V_{\text{cell}}=V_0}$$

- Fixed density variations requires replacing S_{ij} by its projection $S_{ij} - \frac{1}{V_{\text{cell}}} S_{kl} g^{kl} g_{ij}$
- Previous results for $\text{SC}_{1/2}$ crystal $K_0/E_0 \geq 1$ [Phys. Rev. D 90, 045003 (2014)]
- Ground state crystal with the lowest B.E. coupling constant: multiwall with $c_\omega = 14.34$
- We find $E_0 = 917 \text{ MeV}$ and $K_0 = 370 \text{ MeV} \Rightarrow K_0/E_0 = 0.403$