Nuclear matter as a crystal of topological solitons S,
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Solitons in the presence of vector mesons w=-NLoM stress tensor Bethe-Weizsacker semi-empirical mass formula
= Large N.-limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but = Jo determine crystalline phases, we need to compute the stress tensor = CanlUSESelton CiyStalSTEolesHMEtE COEMCIEMtSHNRENE BEUESY CZsaCReT o EMI
vector as well = Given a smooth one-parameter family of variations (s, gs), soliton crystals are critical points By = ay B — agB2/3 — a,CZ(Z -1 aA(N - Z)° +8(N, Z) ay ~ 15.7—16.0 MeV,
= Can identify vector mesons with gauge multiplets of a minimally broken of the energy E(y, g), that is solutions of [Phys. Lett. B 855, 138842 (2024)] B1/3 b U ag ~ 17.3 — 18.4 MeV
SU2);, ® SU(2)p ® U(1)y, gauge model [Phys. Rev. Lett. 56, 1035 (1986)] q it AT . - S .
= The w-meson can be introduced by gauging the U(1) vector symmetry, and it couples d—E(Sﬁs,QQ = / dgf\/g (CIDA(%Q)S@A + Sii(; 9) 9k g]kglz) = () ethod: approac ;E € = LSl oz—pa.rhc € apprqmmgho.n with n° a-particles
anomalously through the gauged Wess-Zumino term > s=0 JT? " Energy of a B = 4n” chunk in the a-particle approximation:
«
* Skyrme stabilizing term related to the effects of the p-meson field in the m, — oo limit = S(, g) € T(G2T*T3) is the stress tensor and @ € T(o~TSU(2)) the tension field of ¢ E(B) = CrftalB Echunk7 Echunk _ G”QE%ce 6£Zf/a§e32/3
= Sextic term represents my, — oo limit of the w-meson [Phys. Lett. B 145, 101-106 (1985)] » The stress-energy tensor S = S;;dz'dz/ associated to the energy = Classical binding energy of an isospin symmetric chunk: 1
= Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite
1 9 1 1 2 B¢ 3 CLV E1 Ea
mass vector mesons E(p,g) = y é\dgp\ + E(V o ) + \dwo\ + 5w volg, E, = BE, — E(B) = (El B cri/stal) B_ é/f%CGBQ/g = ) o 1 crystal’
S = 35 face
: - bject to th traint \ V2
Solitons stabilized by w-mesons PHPJECL O HE COnSH Al o
(Ag + 1) W = —Cw* P =, = Only need to compute the nucleon mass Eq, crystal energy Eg, ol and the energy of a
) N ) ) B . . 9 s . . single face of an a-particle EO‘
Non-linear a-model (NLoM) co;gled to an w meson2 [Phys. Lett. B 137, 251-256 (1984)] s the section of Syml(T M) g|1ven by [J. Hllgh Energ. 1Phys 06, 1116 (202?)]] . Previous results for SC1/2 crystal i e massless Sy Skyrme madslk o = 198 Viey,
L 2, . 2 2 _1 2 . 320 MeV [Nucl. Phys. A 596, 611-630 (1996
L= ——=F2m2Tr(Idy — ) — T2n™ Tr(LyLy) + 2w — —n 0P wpns + Buw B! S(p,g) = (—\dsO\ +=(V o) — =|dwp|” — =wg ) g — ( z¢*h — sdwp ® duwy ag = 320 MeV [Nucl. Phys. ’ (1996)]
U 167 21 T an el T 16 3 4 470 3 . = Qur calculations for the w-NLoM model: |ay, = 15.6 MeV, ag = 18.6 MeV
. . . . . 950 ; I
* Wess-Zumino interaction term g,,w, B describes coupling of the w-meson to three pions Coincides with stress tensor of the unconstrained problem
= Coupling constant 3, related to the w — 777~ x" decay rate _ _ sl |
= Lagrangian is singular and static Lagrangian not bounded below = non-trivial extremization Massive soliton crystals
" In every Yang-Mills theory, the canonical momentum conjugate to the temporal corggonent = For fixed Skyrme Lga4-field ¢, there exists a unique critical point of E(y, ¢) w.r.t. variations 940 |
of the gauge field vanishes identically [Nucl. Phys. A 526, 453-478 (1991)]: pg = o) = 0 of g (generalizes to Lgous-model) [U. Math. Phys. 64, 103503 (2023)] _
= Constitutes a primary constraint of the theory " Four crystals were found with B = 4: the ¢; /9, @a, Ychain aNd @multiwall Crystals 2 o35l -
= Dirac-Bergmann algorithm (singular Lagrangian — constrained Hamiltonian system): " From $1/2 t.he other three crystals can be constructed .b\./ aPPng a chiral 50(4)_ | S :
conservation of this primary constraint in time results in a secondary constraint of the form transformation @ € SO(4), such that ¢ = Q%/Q, and minimizing E(y, g) w.r.t. variations of a0l |
9 statics 9 9 pand g
BwBy +mgwo = Oupp =0 ——— (—V + mw) wy = —fwBo = These are T i
= Can be solved and used to eliminate the constrained degree of freedom, wy i |
ocli, <(0, L, 1)/\/§> ((o, 0,0, 1)) ((0, 0,1, 1)/\/§>
y ) ) 920 | | | ' : :
Geometric formulation of the w-NLoM model N " L) * /, : 20 40 o 100 120 140
. Qa Qrmultiwall Qchain
" Pion field: ¢ : (M, g) — (G, h) . . Figure 2. Plot of the Bethe-Weizsacker SEMF from the a-particle approximation for the w-NLoM model.
* M an oriented Riemannian manifold, and G' a compact Riemannian manifold (normally " These four crystals were also found in the w-NLoM model, with the ground state
SU(2)) configuration dependent on the free parameters of the theory
* Omega meson w = wy,dzH € QY M), wy € C®°(M) = Related to symmetric scattering states of the B = 4 «-particle [Phys. Lett. B 391, 150-156 Compressibility of solitonic matter

= Volume form 2 =vol, /|G| = By = *4p*= (1997)]
= Statics: constrained variational problem [J. High Energ. Phys. 07, 184 (2020)]

1
E(go,g>—/ (5106 + 3V 09) + 5 dunl? + 50t ) vol, > 0
M

subject to the constraint (Ag . 1) o= o D — m;;@w

= Critical points of this are solutions of the Euler-Lagrange equa%ons associated to the
unconstrained Lagrangian £

= The constraint can be solved by a non-linear conjugate gradient method

= Energy of isospin symmetric nuclear matter [Phys. Rev. D 109, 056013 (2024)]

1 (ng—np)? 3
E(np)/B = Eo + 5K - +0 ((np—mn0)*), Ko/Ey~ 0.260
T
0

= Approximate dense nuclear matter as a large extended crystalline configuration composed

of NV unit cells

Each unit cell has baryon number B and volume Vg,

= Baryon density is simply ng = NBqq||/(NVea||) = Beel|/Veel

In the thermodynamic limit N — oo, E(ng)/B — E g/ Bcel

= o is just the classical static mass of a soliton crystal — Ey = Eqj|(ng)/Beel

= Can consider E..|(npg) by varying the baryon density npg or, equivalently, the unit cell
volume Vce”

= The compression modulus is thus
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Varying the metric

= Consider the base space to be the 3-torus
(RN, gruc), A= {niXi+npXo+n3X3:m; €Z}

= Key idea [Comm. Math. Phys. 332, 355-37/7 (2014)]: Identify all 3-tori via diffeomorphism
" Fixed density variations requires replacing S;; by its projection S;; — %@Sklgklgij
g

F:(T% g) = (R°/A, geuc), 1K1+ 22Xo + 23X3 oo
- = Previous results for SCl/Q crystal Ko/ Eqg > 1 [Phys. Rev. D 90, 045003 (2014)]

. 3 — 3 /73 * 1
The metric on T® = R*/2” s the pullback g = F¥ggyc = gijdz d)  9ij = Xi XJ | _ . , . . = Ground state crystal with the lowest B.E. coupling constant: multiwall with ¢, = 14.34
(TS, g) is equivalent to (Rg//\, gEuc) Figure 1. The E/B per unit cell of soliton crystals as a function of cell volume in the massive Skyrme model « We find Ey = 917MeV and Ky = 370 MeV = KO/EO — 0.403

= Vary metric gs with gy = F*gg,c <= vary lattice Ag with Ag = A
= Energy minimized over variations of ¢ <= optimal As [Phys. Rev. D 105, 025010 (2022)]
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