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Abstract

The interactions of critically coupled vortices in the Abelian Higgs model are investigated for
various geometries. We determine the form of the Kéhler metric on the moduli space of static
solutions for R? and for compact Riemann surfaces M. It is demonstrated that the Bogomolny
equations, for Abelian Higgs vortices, are integrable on the hyperbolic plane H? of Gaussian
curvature —%, this is achieved by a reduction of the Bogomolny equations to Liouville’s equation.
N-vortex solutions can be geometrically constructed on H? by considering holomorphic maps
f : H? — H?, where the target space also has Gaussian curvature —%. One finds that the Higgs
field ¢ is dependent on the the map f, and the ratio of the metrics on the domain and the target
space. We observe that the map f is required to be a finite Blaschke rational function, where
the ramification points of f are the positions of the vortex centres.
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1 Introduction

There are essentially two types of solitons, integrable and topological (non-integrable), and their
physical interpretations, as well as their fascinating mathematical properties, have been studied
extensively in the literature. The basis of this paper is the study of topological solitons in Lorentz-
invariant field theories. Integrable solitons take the form of localized lumps, whereas topological
solitons take the form of domain walls, vortices, instantons, and monopoles. A static field theory
consists of a set of field configurations, which are typically described by sections of fibre bundles or
functions on some manifold, and an associated energy functional dependent on these fields. Field
configurations which minimize the energy functional are solutions of the static field equations and,
in particular, a topological soliton is a field configuration which minimizes the energy functional,
and is topologically non-trivial. More exotic examples of topological solitons in field theories include
sphalerons, which are saddle point solutions of the field equations, and calarons, which are chains of
charge-2 instantons with axially-symmetry in Yang-Mills gauge theory. We will give a brief overview
of topological solitons before discussing in detail vortices in the Abelian Higgs model.

1.1 Topological solitons

Although the static solutions of various non-integrable (2 + 1)-dimensional field theories have been
explicitly constructed [17], a lot less is known about the dynamics of the solutions of such theories.
However, there exists an analytic approach to studying the dynamics of solitons in non-integrable
field theories — the geodesic approximation. The geodesic approximation (also referred to as the
slow-motion, adiabatic, or moduli space approximation) was originally proposed by Manton [10] in
his paper on the scattering of BPS monopoles. This is a powerful method for investigating the
slow-motion scattering of monopoles, in which the dynamics can be described by considering the
dynamics in a reduced, finite-dimensional parameter space of static solutions, the moduli space [16].
The moduli space is parameterized by collective coordinates, with its metric being induced by the
kinetic energy functional of the gauged field theory. This moduli space approximation serves as a good
approximation provided the velocities are sufficiently low such that the slowly-moving monopoles are
restricted to motion tangent to the moduli space. The resulting dynamical problem is reduced to
calculating the geodesic motion on the moduli space with respect to the induced metric. Thus it is
essential to obtain the static solutions of the underlying theory, in order to determine the metric on
the moduli space.

One particular model known to admit static solutions is the Abelian Higgs model at critical
coupling. The corresponding solutions are known as vortices and forces between these vortices
balance at the critical coupling value, giving rise to mulit-vortex solutions. The static Abelian Higgs
theory can be used to describe the Ginzburg—Landau theory of superconductivity, where the critical
coupling value distinguishes between Type I and Type II superconductivity. The Abelian Higgs model
can also be used to describe the interaction of U(1) gauged cosmic strings in cosmology. This model
exhibits the Higgs mechanism and the spontaneous-symmetry breaking results in the formation of
these vortex strings during the cooling of the early universe [12].

In a remarkable paper by Witten [1], Witten constructed all the self-dual SU(2) Yang-Mills
instantons on R*, which are invariant under an SO(3) symmetry. In particular Witten showed that,
via the SO(3) symmetry, the self-duality equations in R?* reduce to the Bogomolny equations for
Abelian Higgs vortices on the hyperbolic plane H? with Gaussian curvature —%. This construction
gives a Yang-Mills gauge field on the product manifold H? x S?, which can be extended smoothly
to a gauge field on R* [I8]. Furthermore, Witten showed that the Abelian Higgs vortices on the
Hyperbolic plane H? are in fact integrable, as the Bogomolny equations in this case reduce to the
integrable Liouville’s equation. The explicit solutions of this can be constructed by considering a
holomorphic mapping f : H? — H2. One finds that f must be a finite Blaschke rational product, so






that the solutions satisfy the boundary conditions and give a finite-valued Yang-Mills action.

This paper is laid out as follows. We begin by laying the foundations of classical field theory
before discussing gauge field theories. Emphasis is placed on U(1) gauge field theories and the
Lagrangian for scalar electrodynamics is derived, both for flat spacetimes and for curved spacetimes.
Spontaneous-symmetry breaking and the Higgs mechanism are then discussed, thereby naturally
introducing the Abelian Higgs model. A brief discussion on Derrick’s theorem and the existence
of non-vacuum solutions then follows. This introduces the formalism required to investigate vortex
solutions of the Abelian Higgs model for various geometries. In Section [3] Abelian Higgs vortices
on R? and its relation to the Ginzburg-Landau theory of superconductivity is presented. Then the
dynamics of critically coupled vortices are discussed, naturally leading to the introduction of the
geodesic approximation. The subsequent dynamics on the moduli space and the form of the metric
on the moduli space are detailed. Section[d]introduces a variation on the geometry and, in particular,
Abelian Higgs vortices on the hyperbolic plane H? are constructed. Finally, a brief conclusion and a
discussion on possible future work are presented.

1.2 Notation and convention

Throughout this paper we will adopt the following convention and notation. Roman indices run over

space 1, j,k = 1,2,..., d, whereas Greek indices run over spacetime p,v =0,1,2,...,d. A covariant

vector is of the form a# = (2° 2!,..., 2%), where one normally drops the indice and it is assumed

that z = 2, unless stated otherwise. We will also sometimes write this as = = (2°,x) or z = (£,x).

Similarly, a contravariant vector takes the form x, = (2%, —z',..., —2%). We adopt the Einstein

summation convention, i.e. summing over repeated indices. For example,

d d
vyt =Y wyt, Fu P =) F, P (1.1)
pn=0 p,v=0
The signature of a (d+1)-dimensional Minkowski spacetime is always (+, —,--- , —). On a flat (d+
1)-dimensional Minkowski spacetime R x R, the Minkowski metric tensor is G = diag(+,—, -+, —)
and the metric is given by
ds® = g, datdr” = (dz°)? — (dz")?. (1.2)

The flat Minkowski spacetime R x R? is equipped with the inner product
zy = 7'y, = v, y" = guaty’ = 2% — 2y’ (1.3)

The following notations for derivatives are employed throughout

=2~ (00,V), 9= — (3,-V). (1.4)

B oz N Oz,

If we now consider a (2 + 1)-dimensional spacetime and introduce the local complex coordinate
z = ' + iz?, then it is understood that the complex derivatives are

0 1 , 0 1
82———5(81—282), ag—g—i

P (O +1i0s), (1.5)

where 9; = -2;.
K3 oxt

It is also worth noting that a Lie group is written as G' and its associated Lie algebra is denoted

by the lowercase math fraktur font g. For example, the U(1) Lie group has the Lie algebra u(1) and

similarly SO(2) has the Lie algebra so(2).



2 Field theory

The purpose of this section is to concisely introduce the required field theory formalism necessary for
the discussion of vortex solutions in the Abelian Higgs model. In particular, our aim is to discuss U (1)
gauge field theory and present the scalar electrodynamics Lagrangian for flat and curved spacetimes.
From here we can introduce the symmetry-breaking Higgs potential and discuss the role of the Higgs
mechanism in the theory.

2.1 Classical field theory

In classical Lagrangian field theory, one is concerned with the dynamics of fields throughout space-
time. We will only consider scalar fields ¢ in this paper, locally denoted as ¢(x). Essentially, a field
¢ can be considered as representing an infinite number of dynamical degrees of freedom, where the
value of the field at a spatial point represents one degree of freedom, which evolves in time [2].

We can describe the dynamics of classical fields using a variational formalism, and by considering
the Lagrangian and the action principle. The evolution of a system progresses along the path of
stationary action, where the action S is defined in terms of the Lagrangian L.

2.1.1 Lagrangian field theory

Let us first suppose that space is R? so that spacetime is R x R?. Then the action S associated with
the Lagrangian density £(¢,0,¢) is given by

:/Ldt://Rdﬁ(Qauqﬁ)ddxdt, (2.1)

where the integration is over spacetime.

The action principle states that a system evolves between initial data ¢(t1,x) and final data
¢(ta,x) along the “path” in configuration space which extremizes (normally minimizes) the action S.
In other words, the field will adopt the configuration which reduces the action S to its minimum. To
find this configuration, we look for a field configuration such that an infinitesimally small variation
of the field leaves the action unchanged, i.e.

o(z) = ¢ (2) = ¢(z) +0p(z) = Sr>S+6S with 65 =0, (2.2)

55://Rd (5052 (5¢) 500 “(b)) d®x dt. (2.3)

The variations satisfy the following boundary conditions, d¢ — 0 as |x| — oo and d¢(t1,x) =
d¢(te,x) = 0. Now, using the following relation

oL oL oL
% (55 ) = 209555+ (55.5) 24)

where

and integrating by parts yields

o [ ()] o )] e

The last term can be turned into a surface integral over the boundary of the (d + 1)-dimensional
spacetime region of integration [8]. By virtue of the boundary conditions, this surface term vanishes.



This has to be true (for ¢ to be an extremum of S) for all §¢, so for the variation in the action 0.5

to vanish we require
oc _ d, (i) = 0. (2.6)
0¢ 9(0,9)
This is the Fuler-Lagrange equations of motion for a dynamical field, and if there are multiple fields
then there is one such equation for each field.
The simplest Lorentz invariant field theory in a (d + 1)-dimensional Minkowski spacetime R x R?
has the Lagrangian

ool | (%wa% - U(¢>) aiz, 2.7

where U(¢) is a potential (with no explicit x dependence), normally taken to be a polynomial. We
can split this Lagrangian up into its corresponding kinetic energy term,

1
Tlol = = Ond)% d? 2.8
0= | (@hor e 2.9
and potential energy term,
viel= [ (570 vorve) i 29)

such that L =T — V. The Euler-Lagrange equations corresponding to the Lagrangian (2.7) read

w2y WU a _
9o0o ¢ V¢+d¢_m¢+d¢_

0, (2.10)
where O = 9,0" = 9y0y — V? is the Laplace operator of Minkowski spacetime [9].

We can also extend this theory to a spacetime R x M where the space M is endowed with a
Riemannian metric h;;(x). The integration measure is v/det h d%x, which is the natural measure on
M, and the term V¢ - V¢ simply becomes h*9;¢9;¢. The Lagrangian (2.7) then becomes

Lig] = / (%(GOQS)Q — %hijaigbﬁjgb — U(¢)) Vdet hd'z (2.11)
M
and the Euler-Lagrange field equations now read
1 . au
0000p — —=0; | Vdet hhV0,;¢p) + — = 0. 2.12
0 OQb \/m ( € ]¢> d¢ ( )

2.1.2 Noether’s Theorem

Noether’s theorem says that if the action .S is unchanged under a transformation, then there exists a
conserved current j*(z) associated with the symmetry such that the equation of motion implies that

0,J" = 0. (2.13)

More explicitly, this gives
Oop+V-j=0, (2.14)

where p = J° is a conserved charge density and j = (J¢) is a current density [5].
Consider an arbitrary infinitesimal transformation of the field

o(z) = ¢(z) + d9(z), (2.15)



where d¢(x) is some infinitesimal deformation of the field configuration [§]. This variation is known
as a symmetry if it leaves the Euler-Lagrange equations, and thus the action, invariant. In fact, one
can show that this variation is a symmetry if the corresponding variation of the Lagrangian density
L is a total divergence [2],

L(z) = L(z)+ 0,T"(x), (2.16)
for some J#(x). Let us explicitly compute the change in £,
oL oL
L =—0¢p+ ———0(0
oL oL oL
— % 5, (%5 V] ss+ 0 (—5) 2.17
5% -2 (a5) ]+ (3% 210
The first term vanishes by the Euler-Lagrange equations and thus have
oL
0L=0,| =—=0¢ | . 2.18
(a0.07%) 219

But by the definition of symmetry transformation, we set the remaining term equal to 0,J"(x) and
find

8 J" =0 (2.19)
for
oL

This result states that the current J* is conserved; moreover, it also tells us what it is. There is a
conservation law for each continuous symmetry of L.

2.1.3 The energy-momentum tensor

Recall that in classical particle mechanics, invariance under spatial translations gives rise to the con-
servation of momentum, while invariance under time translations is responsible for the conservation
of energy. We will now see something similar in field theories.

Noether’s theorem can also be applied to spacetime transformations such as translations and
rotations. Consider the infinitesimal translation in Minkowski spacetime

ottt — €,
this induces an active transformation of the field configuration
o(x) = o(z +€) = ¢(z) + €0, 0(x).
Since the Lagrangian density is also a scalar, it transforms as
L— L+ €e0,L=L+€e0,(6"L).

Since the change in the Lagrangian is a total derivative, we may invoke Noether’s theorem which
gives us d conserved currents (j*),, one for each of the translations €” with v =0, 1, ..., d,

0L o
(7")y = —a(auqs)a”(b gL=Th,. (2.21)

The conserved current is the stress-energy tensor, also called the it energy-momentum tensor, of the
field ¢. It satisfies
0,T", = 0. (2.22)

7



We can also write the energy-momentum tensor as

oo e T2 et 2
The conserved charge associated with time translations is the energy,
E[¢] = / T qéy = / { oL ¢ — 5] diz, (2.24)
R4 re 0(009)
and the conserved charges associated with spatial translations are the momentum components
Pi[¢] = — /Rd TP d%r = — g %a@ d%x. (2.25)

In analogy to point particle mechanics, we thus see that invariants of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved quantities like
angular momentum. Furthermore, one can study so-called internal symmetries, i.e., ones which are
not related to coordinate but other transformations.

2.2 Gauge field theory

A gauge theory is a type of field theory where an internal Lie symmetry group G acts locally. Gauge
transformations form a Lie group and if field configurations only differ by a gauge transformation
then they are regarded as physically the same. We refer to this Lie group as the gauge group, or
symmetry group, of the theory.

We begin by introducing an abelian gauge theory with the symmetry group G = U(1), which
physically describes the interaction of fields with the electromagentic field. Throughout this section
we shall consider a complex scalar field ¢(x) = ¢1(x) + ig2(z) coupled to an electromagnetic field
with symmetry group U(1). But first, consider the ungauged theory in Minkowski spacetime R x R?
with the Lagrangian

1. -
o) = [ (30u600 - (i) ) 220
R
It is trivial to show that the Lagrangian ([2.26]) is invariant under the global phase rotation
¢(x) = (), (2.27)

where we have introduced the parameter ¢, which measures the strength of the phase transformations
[5]. Hence, there exists an internal symmetry U(1) = SO(2).

Now, let us consider local phase transformations. In order to obtain a U(1) gauge theory, we
require the Lagrangian to be invariant under the gauge transformation

o(x) — @ (). (2.28)

To construct such a Lagrangian, we need to extend the global gauge invariance to a local gauge
invariance. (It is worth noting that the potential U(|¢|?) is already gauge invariant.) Under the local
phase transformation , the derivative 9,¢(z) will be subject to transformations at neighbouring
spacetime points, which results in the following effect:

0,0(x) — 0y, (eiqg(x)¢(w))
= 0 (9,0(x) + g0, (x)d()) (2:29)



In order to make a Lagrangian invariant under local phase transformations, we want to introduce new
terms whose variations will compensate for the additional 9,£(z) term. We do this by introducing a
covariant derivative D, which transforms covariantly according to

D,d(x) = @D, é(x). (2.30)
Comparing (2.29) and (2.30)), we see that we can compensate for the 9,£(x) term by defining the

gauge covariant derivative

Dyd(x) = (0 — iqAu(x)) ¢(x), (2.31)
where A, (z) is a covariant rank 1 tensor. Then, applying the gauge transformation to the
covariant derivative (2.31]) we obtain

D, ¢(z) — ¢'e¢(@) (@@(m) +1¢0,&(z)p(z) — qu’#ng(x)) . (2.32)
For the covariant derivative (2.31)) to be covariant, we require A, to obey the transformation rule
Ay(z) = Al (x) = Au(x) + 0,8(x). (2.33)

Hence, we have introduced a new field A, in order to construct a gauge invariant Lagrangian. This
new field A, is known as the electromagnetic gauge potential, and is called a gauge field.

Since A, is real, we have that the covariant derivative of the complex scalar field ¢ is simply the
complex conjugate of the covariant derivative of ¢, i.e.

D¢ = 0,6 + iqA,é. (2.34)
Thus, under the gauge transformations (2.28)) and (2.33)), D,¢ transforms as
D, +— e €@D . (2.35)

Therefore, the term D,¢D"¢ is gauge invariant and and we can add it to our construction of a gauge
invariant Lagrangian. Our Lagrangian density in (2.26)) simply becomes

1
Lo= 5 D60"6 — U6l (2:36)

Before we go onto discuss dynamical terms involving derivatives of our gauge field A,, we digress
briefly to discuss some properties of the covariant derivative D,. This will naturally lead us to
introduce the curvature tensor F),,, and enable us to write a gauge invariant Lagrangian term for
the gauge field. We can view the covariant derivative D, as consisting of two terms, each of which is
related to an infinitesimal transformation. The first term 0, generates an infinitesimal displacement
x# — azt + €, whereas the second term —igA, generates a field-dependent gauge transformation
with parameter { = —e*A,. Their combination is referred to as a covariant translation and, under
this translation, a field transforms as [6]

¢ = €D, (2.37)

This shows that the covariant derivative D,, corresponds to an infinitesimal variation, which must
satisfy the Liebniz rule:

Dy(¢192) = (Du1) g2 + 1(Dydh2). (2.38)

One can verify this by considering local phase transformations with strengths ¢; and ¢o. Then we
have

Dy(d1¢2) = (Op — i(q1 + q2) Ap) (9102)
= (au¢1 - iQIAu¢1>¢2 + ¢1(8u¢2 - iQ2Au¢2)
= (Du¢l)¢2 + ¢1(Du¢2)7



as required.
Now we want to consider the non-commutativity of the covariant derivative D,,, by applying the
antisymmetric product
[Dy, D¢ = D (Dy¢) — Doy(Dyud). (2.39)

Writing out the first term explicitly we have
D (Dy¢) = 9,0,6 — iqA,0,0 — 1q(9,AL) 6 — 1q A 040 — ¢* AL ALG. (2.40)
From this, we arrive at the commutation relation
[D,,D,| = —iqgF,,, (2.41)

where

F, = 0,4, — 0,4, (2.42)

is the curvature 2-tensor [5]. This is a measure of the non-commutativity of the covariant derivaties.
The commutation relation is called the Ricci identity. Introducing the curvature tensor
ensures that the fields A, are dynamical. From the Ricci identity (2.41]), we see that F), must
transform covariantly. Further, applying the gauge transformation (2.33]), we see that the curvature
tensor is also gauge invariant,

Fl = 0u(Ay + 0,) — 0,(A, + 9,8)
= 0,4, — 9,4,
—F,,. (2.43)

However, this is related to the fact that our gauge transformations are Abelian.
We also have that covariant derivatives satisfy the Jacobi identity,

[Duv [Dw DPH + [Dpa [D/u Du“ + [D,,, [Dpa Du]] =0. (2-44)
Expanding this identity out and explicitly writing the double commutator of covariant derivatives,

[Dyi; [Dy, Dy)l¢ = —ig(D,F,,), (2.45)

leads to the following identity:
D,F,,+ D,F,, + D,F,, = 0. (2.46)

As the curvature tensor is gauge invariant, we can simply express this in terms of ordinary derivatives,
which yields the Bianchi identity,

au]-(_’yp + 8pFl,LV + a}/Fpu = 0. (247)

The Bianchi identity implies that we can express the curvature tensor F),, in terms of a vector
field [6], which is in accordance with (2.42)). We can identify the components of F),, with the electric
field E = (E;) and the magentic field B = (B;). The electric components of the field tensor F),, are
given by

which comprise a 1-form in space, and the magnetic components of the field tensor are given by

Fij = —eijuBe = 0;A; — 0, 4A;, (2.49)

10



which comprise a 2-form in space. Thus, the curvature tensor F),, is commonly referred to as the
electromagnetic field tensor. We can also express the field tensor F),, in matrix form,

0 B B F;

|-B. 0 -B; B
Fw)=1_g, B, 0o -8
—E; —By, B 0

(2.50)

The electromagnetic field tensor F),, can be used to construct a gauge invariant Lagrangian term
for the gauge field A, via the Lorentz scalar F),, F* [5], which is given by
1
L= ~1 . (2.51)
By combining (2.36) and (2.51]), we are now able to construct a Lagrangian density £ = L4+ L for
scalar electrodynamics,

1 1—
£ = —FuF" + 3D,0D"6 = U(19P), (252

which is invariant under Lorentz transformations and the combined gauge transformations
and . The requirement of a local gauge invariance results in an interacting field theory, where
scalar electrodynamics describes the theory of photons coupled to charged spinless fields. One can
separate this Lagrangian density into space and time components, which yields

1 1—— 1 1——
L= SEB + 5 DodDog — S FyiFiy — 5 Dio Do — U(|6]). (2.53)

Now we can define the kinetic and potential energy functionals,

1 1——
TWAhi/<}iE+—DWDm)ﬂx (2.54)
Rd 2 2
and . .
Viodl = [ (§FuFy+ 306D + U(oP)) ' (259
Rd

respectively. The sign convention in the Lagrangian density is chosen such that the kinetic
energy (2.54)) is positive definite. Note that the potential energy expression of scalar electrodynam-
ics is called the Ginzburg-Landau free energy, which we will explore in detail in Section
when we look at vortex solutions in the Abelian Higgs model. The reason for labeling the potential
energy as the Ginzburg—Landau free energy will become transparent at the end of this section. From
the energy-momentum tensor, the Hamiltonian of the scalar electrodynamics is given by

oc oL - oc
Al = dly = _ T 9yA, — d°
o= [ Hita= | <a<ao¢>8°¢+a(@ogb)aO“a(aoAa)a“ ’ ﬁ) '
[ (teE+1ipg a Yr R+ tDen, 2y g
—/Rd (2 i + 2D0¢D0gb> d x+/Rd <4 i Fij + 2D,¢DZ¢+U(|¢| )) d®x
=T +V. (2.56)

So the total energy of the system is simply the kinetic energy plus the potential energy. When we
consider Derrick’s theorem in Section [2.4] it will be more useful to have the Hamiltonian density in
the following form:

H = % (IB]* + |E|*) + % (IDos|” + [Do*) + U(l¢l)

1 1
= JIFP+ 5IDo + U(lo?). (2:57)

11



One can readily obtain the field equations for Lorentz invariant scalar electrodynamics, with
Lagrangian density given by Eq. (2.52), by considering variations of fields {¢, A,}. We require the
condition that the action functional,

Slo, A] = //Rd (_%LFWFW + %D_,@Dﬂgb — U(](M?)) A%z dt,

must be invariant under these variations. Here we assume that the variations {d¢,0A,} vanish at
spatial infinity and at the temporal beginning and end. Then the field equations (obtained by taking
variations with respect to the fields {¢, A,}) are given by

oL _ 0L\ _ 14l

96 <a(m)) =0 = Up¢=-2U(l¢[")¢, (2.58)
oL oL .
o4, ~ % (a@Au)) =0 = OF=-J (2.59)

where Op = D, D" is the covariant d’Alembert operator and

7 =" (60" — 6D79) (2.60)

is the Noether current associated with the U(1) global symmetry (2.27). The conservation law
0,J" = 0 is consistent with and is a direct consequence of (2.58). Recall from Section m
that J° = p is the conserved charge density and j = (J') is the current density. Then, consider the
v = 0 component of the field equation , which comes from variation of the Aq field. This yields
Gauss’ law V - E = p, which implies that we should identify

p=1"="1 (6006~ 6D9) (2.61)

with the electric charge density. It is worth noting that there is no electric charge unless our field ¢
is complex-valued; real-valued fields ¢ describe electrically neutral particles [5].
We can expand out Gauss’ law (2.61]) and, using the field equation ([2.59)), express it as

(V7 — alo) Ao = D00, + 2(5006 — 6005). (2.62)

It is sometimes possible to fix the gauge such that the right-hand side above vanishes, and we can
then choose Ay =0 [2].

Now, consider the static situation of scalar electrodynamics in a (241)-dimensional Minkowski
spacetime. Then the electric field in the static case is

Therefore, we see that an electric field is absent in the temporal gauge condition Ag = 0, and the
resulting static solution is electrically neutral. Gauss’ law in the form (2.62) thus reduces to

V2A0 = q|¢|2A0 (264)
in the static case. The corresponding (static) Hamiltonian density is given by
1 1 1 1
H = 5\&-/10\2 + §A3|¢\2 + ZF@ + éumy? +U(|9]). (2.65)

This brings us to the Julia—Zee theorem, which states that finite-energy static solutions in the theory
of scalar electrodynamics in a (241)-dimensional Minkowski spacetime must be electrically neutral.
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More formally, suppose that the field configuration {¢, A} is a solution to the static version of the
field equations and and Gauss’ law over R%. Then A, must be a constant and
so the resulting static solution is automatically electrically neutral and, in particular, if the field ¢
is not identically zero then one requires Ay = 0 everywhere. We will not prove this here, however,
the reader is invited to read the paper by Spruck and Yang [30] for a detailed mathematical proof of
the theorem. One the main consequences of the Julia—Zee theorem is that it makes it manifest that
the static Abelian Higgs theory describes exactly the Ginzburg—Landau model of superconductivity,
which is a purely magnetic theory. As we shall see in Section[3] the scalar electrodynamics Lagrangian
in the static case becomes exactly that of the Ginzburg-Landau free energy [31].

2.2.1 Scalar electrodynamics on curved spacetimes

In a similar fashion to the simple ungauged theory in Section [2.1.1} we can also easily extend this
theory to a spacetime R x M, where M is a Riemannian manifold equipped with the metric h;;(x)
and measure v/det h dz. The Lagrangian density then becomes

1
2
This expression will prove useful later when we consider abelian Higgs vortices on compact hyperbolic
surfaces.

In particular, consider a (2 + 1)-dimensional spacetime R x M, where M is a Riemann surface
with a compatible Riemann metric with position-dependent conformal factor Q(z!, z?). Then the
Minkowski metric is

1, — 1., R
L = ShVEiE; + 5Do¢ Do¢ thkhﬂlﬂij, — 5h"DigD;¢ = U(|o]*) (2.66)

1 0 0
(gu) = [0 =2 0 (2.67)
0 0 -—-Q
with inverse metric
1 0 0
(¢)=10 Q! 0 . (2.68)
0 0 Q!
The scalar electrodynamics action functional is given by
1 — 1
Sle, Al = / / \/E[§Du¢g‘“’Dy¢—Z—lg“o‘gl’ﬁFw,Fag—U(|¢|2) d*z dt. (2.69)
M
Taking variations in the fields {¢, A,} yields the field equations:
oL oL
—-D,[—=)=0 =D D,¢g"") = —/q20U’ (|¢|? 2.70
52 (555 . (VED.8g™) = —/G26U" (1) (2.70)
oL oL 1q - -
= =0 e | = meg'SE 5) = —/99"° = (¢Dsd — ¢Dso) . 2.71
A 8u<a(aﬂAy>> 0 =0, (V99""9" Fas) = =995 (6Ds9 = 6Ds6) . (2.71)

The Minkowski metric g, has (modulus of) determinant g, which in this case is g = Q?, so that
the natural measure is \/g = 2. The second field equation can be written more compactly as

0,D" = —J", (2.72)
where
D' = /99" g"P F.ps (2.73)
and .
Z — —
T =g | 5 (8050 — 6040) + alo A (2.74)
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is the Noether current. Focusing on the v = 0 component of the second field equation, arising from
the variation of the Ay field, the second field equation reduces to

iqg - _
(V2 = Qalof?) Ao = 0,00A; + O (6006 — 6006) (2.75)
In the static case this is simply

If the Riemann surface M is simply the flat plane R? i.e. € = 1, then one sees that we readily

obtain (2.64)).

The corresponding Hamiltonian density is given by

1 1 1 1
H= §Qfl|3if4o|2 + §A3\¢|2 + 9721—1175 + §Qfl|Dz¢\2 +U(|9%). (2.77)

So, the total energy of the system is therefore

E:/ HOQd*x (2.78)
M
1 YL alop 1 2 2 2
= S10:Ao]” + SQAG|G1" + Q7 F + S [Digl” + QU([9]°) | d'x, (2.79)
wm \ 2 2 4 2
and the finite energy condition reads
/ HQd*r < . (2.80)
M

2.2.2 Abelian gauge fields and Chern numbers

Now, we introduce a topological invariant which will prove useful when considering vortices and, in
particular, the vortex number A/. There is a further generalization of the theory developed in the
previous section. We can interpret the field ¢ as a section of a U(1) bundle B over an unbounded
compact Riemann surface M, where the gauge field is a connection 1-form A = Adz' + Asydz? on
the bundle B. Then the curvature of the connection F' = dA = (0, Ay — 0 A;) da' Adx? is the 2-form
magnetic field.

We begin by considering a gauge field A in the plane R?. Then we define the first Chern number
¢, of the complex line bundle over R? to be

1 1
a=[ C = —/ F=_— [ Fydu, (2.81)
R2

R2 27T 27T RZ

where C = %F is the first Chern form of A. Hence, it can be seen that the first Chern number of
the bundle is a multiple of the total magnetic flux through the plane.
In fact, if one considers a general compact Riemann surface M without boundary, the first Chern

number of the bundle B is |

= — 2.82
=2 (28

C1
i.e. we still obtain the same constraint on ¢; [2]. There exists a remarkable characterization of the
first Chern number ¢;, which has powerful implications when considering vortices on M. The number
of zeros, counted with multiplicity, of a section ¢ of the U(1) bundle B is the first Chern number
c1 of the bundle. Vortices are located at the zeros of the field ¢, so we see that the vortex number
N is the first Chern number ¢; of the Hermitian line bundle B. Therefore, the vortex number N is
a topological invariant and is unaffected by small perturbations of the fields, provided the action is
invariant under these perturbations.
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2.3 Spontaneous symmetry-breaking, Goldstone bosons and the Higgs
mechanism

2.3.1 Spontaneous symmetry-breaking and Goldstone particles

In this section, we want to consider the effect of internal symmetries on possible vacuum configu-
rations. Consider a general Lagrangian in Minkowski spacetime R x R? which describes n complex
scalar fields ¢, and suppose that the Lagrangian has no explicit time or space dependence. Now let
V be the vacuum manifold of the theory, i.e. the submanifold of R™ where the potential U(|¢|?), and
thus the energy, is minimized. Vacua, or ground states, are field configurations ¢, € V which are
constant throughout spacetime, and are the lowest static energy solutions.

Consider the following ungauged Lagrangian density, with U(1) internal symmetry, for a complex

spinless field ¢(x) = ¢1(z) + iga(x):

L= 10,600~ U(6P) (n=0.....d) (2.83)

Field configurations which lie on the same orbit of U(1) have the same energy, hence the vacuum isn’t
required to be unique [2]. If we assume that the potential U(|¢|?) is minimized only on a single orbit
of U(1) then two possibilities arise. The first possibility is that the orbit consists of a single point.
Then the vacuum state is unique, and both the Lagrangian density and the vacuum are invariant
under the U(1) symmetry group. This is known as exact symmetry [5]. The second possibility is a
non-trivial orbit, which results in a non-invariant vacuum that is not uniquely determined. In this
case, we say that the symmetry is broken and this is known as spontaneous symmetry-breaking.

The idea of spontaneous symmetry-breaking, and its implications, is best described by considering
the Lagrangian density with the Higgs potential

U(10P) = 2 (63— 1of?)°. (2.8)

where ¢q is the ground state and A > 0 is the Higgs self-coupling constant (refer to Fig. . The
trivial case corresponds to the vacuum state ¢y = 0. Then the minimum of the Higgs potential occurs
at ¢ = 0, and hence the symmetry is unbroken. In this case, our field ¢ describes excitations of two
kinds of particles both with the same mass. The symmetric realization of this theory is known as
the Wigner-Weyl mode [6]. In this theory with unbroken U(1) symmetry group, the particles have
short-range interactions and are massive [2].

We will now consider the case that the vacuum state ¢q is non-zero. One can see instantly from
the global phase rotation ¢(z) +— €“¢(x) that the symmetry is spontaneously broken. It follows
from this that the vacuum must be infinitely degenerate, and the Higgs potential is minimized on
the circular orbit ¢ = ¢pe™ for w € R. Consider fluctuations around the vacuum state ¢ = ¢g > 0
and let the field be given by

¢(x) = do(@) + d1(x) + igo(x). (2.85)
Then we can expand the Lagrangian density ([2.83]) around the vacuum as

L= % 10" d1 + %c%qsza% - %(ﬁ(bo)%% - % (67 + &5 + 26765 + ddodi 0 + ddod}) . (2.86)

We see that the mass of the ¢; particles, defined by the coefficient of ¢? [B], is m; = VAdo. Due to
the degeneracy, the ¢9 excitation about the ground state is massless, and the ¢, particles are referred
to as the Goldstone particles. Hence we have shown that spontaneous symmetry-breaking results
in massless Goldstone bosons, which have long-range interactions. This encapsulates the Goldstone
theorem. The spontaneously broken realization of this theory is known as the Goldstone mode [6].
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Figure 1: Higgs potential (2.84]) for spontaneous breaking of a continuous U(1) symmetry. Oscilla-
tions along the bottom of the potential valley correspond to massless Goldstone bosons.

2.3.2 Higgs mechanism

Now we want to consider fluctuations around the vacuum state in an Abelian gauge theory, and see
if two different symmetry realizations exist her@ also. Our aim is to determine whether the fields
will be effectively massive or massless. In what follows, it will be shown that when spontaneous
symmetry-breaking occurs, the massless Goldstone particles are removed from the system. The
second realization of the gauged theory results in a massive real scalar field and the generation of a
massive gauge field.

To convey this, consider the scalar electrodynamics Lagrangian with the Higgs poten-

tial (2.84),
1 1—— A
L= —ZFM,,FMV + §DM¢DM¢ - g (¢(2) - |¢|2)2 (:U> V= 07 s ad)a (287)

and consider excitations around the non-zero vacuum state. (The vacuum state here is defined to be
¢v = ¢o # 0 and (A,)v =0 [3].) Using the decomposition (2.85), the Higgs potential becomes

1 A
U(16F) = =5 (VAdo)*67 — S (61 + 63 + 20105 + 4006163 + 40067) - (2:88)

We see that the field ¢, acquires a mass m; = v Ado and again the field ¢, is the massless Goldstone
boson. However, the Goldstone boson doesn’t actually manifest an independent physical particle []].
This becomes apparent if one selects a suitable gauge, the unitary gauge, such that the Goldstone
boson ¢ disappears. Using the gauge symmetry , we can choose a suitable gauge transfor-
mation such that ¢(z) becomes real-valued for all z, which removes the Goldstone boson from the
theory. Then the Lagrangian density becomes

L= —i Y+ %amla%l + %d)%AuA“ - %ob%ﬁ + Lint (2.89)
where all the off-diagonal interactions are encoded in Ly [5]. Thus, if the Higgs potential favors a
non-zero vacuum ¢, # 0, then we see that the gauge field acquires a mass ms = ¢y and couples
to the massive real scalar field ¢, with mass m; = vV A¢y. The mechanism, by which the sponta-
neous breaking of a continuous symmetry generates a mass for the gauge boson, is called the Higgs
mechanism. These massive gauge bosons are known as Higgs bosons. Unlike the ungauged theory,
spontaneous symmetry-breaking does not lead to the presence of a Goldstone boson, but rather to
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the appearance of a massive Higgs boson. Accordingly, scalar electrodynamics with Lagrangian den-
sity is often referred to as the Abelian Higgs model, where the complex scalar field ¢ is known
as the Higgs field.

The Abelian Higgs model is the main topic of this paper and, in particular, we will discuss the
role of the Higgs mechanism in superconductivity and its consequences.

2.4 Derrick’s theorem

In the previous section, we discussed spontaneous-symmetry breaking and defined the vacuum man-
ifold V of the theory. Throughout this section, we will restrict our consideration to static field
configurations with finite energy. Such field configurations can be classified by their homotopy class
where, in particular, the vacuum configuration lies in the trivial homotopy class. If ¢ € V then it min-
imizes the energy within the trivial class. This leads one to consider if there exist field configurations
in other non-trivial homotopy classes which minimize the energy within their homotopy class. These
field configurations are normally stable soliton solutions [2]. There exists a non-existence theorem,
known as Derrick’s theorem, which determines whether such non-vacuum solutions are possible.

The essence of Derrick’s (non-existence) theorem is as follows. Consider a spatial rescaling in R?,
x — kx with k > 0. Let ¢ be a critical point of the energy functional E[¢]| and let

61 (x) = B(rx). (2.90)

Further, let
e(r) = E[p")] (2.91)

denote the energy of the spatially rescaled field configuration ¢{*)(x) as a function of  [5]. Derrick’s
theorem states that if the energy e(k) has no critical point for any arbitrary non-vacuum field
configuration ¢(x), then there exist no non-vacuum finite-energy static solutions of the field equations.

From the spatial rescaling , the gradient operator scales as V¢ (x) = kV¢(kx). In order
for the covariant derivative of ¢*) to scale like the field, the 1-form gauge potential A must scale
as A®(x) = kA(kx). Thus, the covariant derivative DA scales as DA™ ¢, (x) = kDAd(kx). We
know how the derivative and the gauge potential scale, so it is simple to work out that the 2-form
curvature tensor scales as F(*)(x) = k2 F(kx). Also, note that the boundary conditions are invariant
under the spatial rescaling , i.e. if » € V then ¢ € V and likewise for the particular boundary
conditions D¢ = 0 and F' = 0 on the d — 1-sphere at infinity S%°'. The reason for mentioning the
conservation of these particular boundary conditions will become apparent in Section [3]

Recall the Hamiltonian density . Then the energy functional for scalar electrodynamics is
given by the integral of this Hamiltonian density over R?, i.e

1 1
Blo.A) = [ (GIFE+ 5008+ Ullop) ) '
Rd
= FE,+ Ey + E,. (2.92)
Under the spatial rescaling (2.90)), the energy of the spatially rescaled field configuration {¢(*), A}

is
e(k) = K" Ey + K*YEy + kL), (2.93)

For our purposes, we are interested in gauged vortices in two spatial dimensions (d = 2) and consider
if non-vacuum solutions, which minimize the energy within their topological class, exist. Suppose
{¢, A} is a solution to the field equations, where the energy of the theory is given by . Then
the energy of the rescaled field configuration {*), A%} is

1
e(k) = K2 Ey + By + — Ey, (2.94)
K
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and so p .
e

We require the derivative (2.95) to vanish at k = 1, which yields Ey = Ey. Therefore, we deduce
that such non-vacuum solutions exist, provided the contribution from the Maxwell energy FE, and
the energy from the potential energy Ej are the same.
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3 Abelian Higgs vortices on R?

In 1950, Ginzburg and Landau published a famous paper on the theory of superconductivity, intro-
ducing the Ginzburg-Landau model. The gauged Ginzburg-Landau model, or Abelian Higgs model,
is known to admit static solitons in two dimensions stabilized by their own magnetic flux. These
static solutions are particle-like solutions known as wvortices, and they exist on a plane or curved
Riemann surface M. The relative strength of the forces between vortices are determined by the
Higgs self-coupling constant A. At the critical value A = 1 (separating Type I and Type II super-
conductors), the forces between vortices balance and there exists static multi-vortex solutions. In
this case, there exists a lower bound on the energy of a field configuration which is proportional to
a topological invariant, the vortex number A [19].

The key idea is that the dynamics of critically coupled vortices can be approximated by low-
velocity motion on the moduli space M, of static solutions. This moduli space M inherits a
natural Kahler structure from the kinetic energy functional of the scalar electrodynamics Lagrangian.
Slow-moving vortices are constrained to motion tangent to M, with the trajectories being geodesics
on Ms. The approximate dynamic problem is reduced to finding the geodesics on M with respect
to the Kéhler metric induced by the kinetic energy functional. This is known as the geodesic (or
moduli space) approximation.

Throughout this section we suppose that space is a two dimensional plane R?, and we will
sometimes make the identification R? = C. On the complex plane C we shall denote a spatial
point by z = a! + iz?. Note that throughout the rest of this paper we have normalized the electric
charge to unity, i.e. ¢ = 1. Our aim is to investigate the dynamics of critically coupled vortices
on R?, and determine the form of the metric on the moduli space M,. The further generalization,
where we discuss critically coupled vortices on compact Riemann surfaces, is covered in Section [}
In this case, we are able to find surfaces which admit integrable vortices. However, here we shall
restrict our focus to vortices on the flat plane R?. (It is worth noting that the static solutions on R?,
although known to exist, are not known in closed form [I7].) We begin by building on the formalism
introduced in Sections [2.2}2.3] and our starting point is the (2+1)-dimensional Abelian Higgs model.

3.1 Abelian Higgs model

The Abelian Higgs model comprises a complex scalar Higgs field ¢(z) = ¢1(x) 4 iga(x) coupled to
a U(1) gauge field A, (z), along with a symmetry-breaking Higgs potential. Alternatively, we can
interpret the Higgs field ¢ as a section of a Hermitian line bundle over R?, where A, is a connection
on the line bundle and F), = 0,4, — 0,4, (1,v = 0,1,2) is the curvature [3], 19]. We will consider
the symmetry-breaking Higgs potential given by

U(10P) = 5 (m? — lof")’. (3.)

where m > 0 is the vacuum state and, for a stable theory, we require A > 0. As before, \ is the
Higgs self-coupling constant. The vacuum manifold of this theory is the circle V = S} ie. || = m,
with the non-trivial homotopy group m (V) = Z.

The Lagrangian for the (2+1)-dimensional Abelian Higgs model is given by the Lagrangian density

for scalar electrodynamics (2.52)) with the Higgs potential (3.1)):

1 1— A
Lip, Al = /RQ (_Z w " + 5 Do D6 — < (m? — \¢y2)2) d*x. (3.2)

Expanding the Lagrangian (3.2)) around the vacuum state m, as we did in Section we see that
the Higgs field acquires a mass m; = v Am. A consequence of the spontaneous symmetry-breaking
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is that the gauge field acquires a mass m4 = m. The potential energy in the Abelian Higgs model is

— A
Vig, Al = %/W (F122 + D;¢ D¢ + 1 (m® — |¢>|2)2) d*z, (3.3)

where Fyy = 014y — 0sA (= —Bs) is the magnetic field in the —a? direction. This is is the two-
dimensional analogue of the potential (2.55). The Abelian Higgs Lagrangian (3.2)), and hence the
potential energy ({3.3)), is invariant under the local gauge transformations

6(x) > €0 g(a) (3.4)
Au(x) = Au(a) + 0,E(w). (3.5)

One can readily obtain the field equations for the static Abelian Higgs model, i.e. E =V, by
considering variations of the fields {¢, A;}. The corresponding field equations are then

DD+ (m? — |6 6 = 0 (3.6)

€ij0; Fia + % (¢Di¢p — ¢D;p) = 0. (3.7)

Note that (3.7) is the two-dimensional analogue of Ampere’s law V x B = j [2], so we can interpret

Ji = 2 (3Dig — ¢D;0) (3.8)

(NSRS

as the electric current in the plane, which is consistent with . The static Abelian Higgs La-
grangian is exactly that of the Ginzburg-Landau free energy in the Ginzburg-Landau theory of
superconductors [15].

In the Abelian Higgs model the vacuum is unique (up to gauge equivalence), and the Ginzburg—
Landau energy is minimized if the following conditions hold over the whole plane: Fi, =0, D;¢ =0
and |¢| = m. The first condition, Fi5 = 01 As — 0241 = 0, requires the gauge field A; to be a pure
gauge, i.e.

Ai(x) = 0:i¢(x). (3.9)

The last condition, |¢| = m, requires the Higgs field to be of the form ¢(x) = me™™®) . If the covariant
derivative is everywhere zero then, using the pure gauge (3.9)), we have

D;¢p = ime ™ (9,a(x) — 0£(x)) = 0. (3.10)

Therefore, the vacuum state of the theory is of the form {¢, 4;} = {me™®™® 9;,a(x)}. But we can
gauge transform the vacuum by e~**®) so that it becomes the simple vacuum {¢, 4;} = {m,0},
which is unique [2].

From Derrick’s theorem, there can exist non-vacuum solutions with finite energy in the Abelian
Higgs model. Recall from Section that, for d = 2, the field configuration {¢, A} is a solution to
the field equations provided F,; = Ej, where

1 A
Bo=y [ Fhdn B=5 [ (- loP) & (3.11)
2 R2 8 R2

In other words, non-vacuum static solutions with finite energy exist provided there is an equal
contribution, to the total energy, from the Maxwell energy E4 and the energy from the Higgs potential
Ey.
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3.2 Topology in the Abelian Higgs model

For this section, it will be convenient to work in polar coordinates (p,#). Transforming to polar
coordinates (p,6), the 1-form connection is coordinate invariant and can be written as

A= Aydz! + Asda?® = A,dp + Agdb, (3.12)
and the magnetic field in the plane becomes
Fpg = (aoAG - 89Ap) = ,0F12- (313)

The covariant derivatives in this coordinate system are D,¢ = 0,0 — iA,¢ and Dy = Oy — i Ag¢.
Thus, using the Lagrangian density (2.66) where the Riemann manifold M is the plane R? equipped
with the metric ds? = dp? + p?df?, the Ginzburg-Landau energy becomes

0o 27 _ _ )\
Vil =3 [~ [ (5B + DD+ DD+ 3 (m? — (o)) pdpas. (319

Our aim is to show that the Higgs field ¢ is a pure phase on the circle at infinity S. , and that
the gauge field A is a pure gauge on S1 . We will begin by deducing a limiting form of ¢ on S. and
show that this is indeed pure phase. Finiteness of the Ginzurg-Landau energy implies the boundary
conditions |¢| — m and D,¢ — 0 as |x| — oo [16]. Consider a fixed radial line 0 < p < oo [2] and

let p — 00, so that ¢ — me™. Then, asymptotically, we have
D,¢ = ime" (9,0 — A,) = 0, (3.15)

which yields A, = d,a. Now, let us transform to the radial gauge A, = 0. In the radial gauge, the
vanishing of the covariant derivative D,¢ at spatial infinity requires d,¢ — 0 as |x| — oo along a
fixed radial line. Hence the limiting form of ¢ on SL is lim, o ¢(p,0) = ¢°°(#). Thus, we deduce
that the Higgs field ¢ is a pure phase on S! | and is given by

¢ (0) = me™ ™), (3.16)

Now we will show that the gauge field A is a pure gauge on S. . Finite energy also imposes the
boundary conditions F,y — 0 and Dy — 0 as |[x| — oo. In the radial gauge A, = 0 the magnetic
field in the plane is F,p = 0,49 = 0. Thus, the gauge field component Ay has the limiting form
lim, ,o Ag(p,0) = AP(0). Now the vanishing of the covariant derivative Dy¢ at spatial infinity
yields

D™ = g™ — i AL d™ = ime'™ (Gpa™ — AF) = 0. (3.17)

Therefore, we see that the gauge field is a pure gauge on Sl | given by
A = 0pa™. (3.18)
The Higgs field at infinity ¢> is a map from the circle at infinity S to the vacuum manifold

V=3
¢ Sl — S}, (3.19)

This map has an associated topological degree, or winding number, deg(¢>) =N € Z given by
1 2
= — Jpa™(0) db. 3.20
N=g [ a0 (3.20)

Now recall from Section that the first Chern number ¢; of a U(1) bundle B over R? is given
by (2.81). On the circle at infinity S._, the gauge field is given by (3.18). Then, using Stoke’s theorem

21



for differential forms, the first Chern number ¢; can be expressed as a line integral along the circle
at infinity [2],
1 1 I
F=— A=— Opa™(0) db. (3.21)
0

Cl == —_— —_=
21 Jre 21 Js1 2w

Thus, one easily sees that the winding number N is the first Chern number ¢;. As we discussed
in Section the first Chern number ¢; is the vortex number, i.e. the number of zeros of the
Higgs field ¢ counted with multiplicity. It follows from this that the winding number N is the vortex
number.

3.3 Ciritically coupled vortices

The Higgs self-coupling constant A determines the relative strengths of the forces between vortices.
As a result of the spontaneous symmetry-breaking, the fields are massive and the vortices have short-
range interactions. In the Type I superconductor regime, A < 1, the scalar forces prevail and the
vortices are attractive [25]. Whereas, in the Type II superconductor regime, A > 1, the magnetostatic
forces are dominant [23] and the vortices repel one another. At the critical coupling value A = 1
the forces between vortices balance, and there exists static multi-vortex solutions corresponding to
vortices located arbitrarily in the plane. In this case, we will see that the static energy of a field
configuration is bounded below by the vortex number A/, which is a topological invariant.

Throughout the rest of this section, let us set the vacuum expectation value m = 1, so that
the vacuum manifold is now the unit circle ¥V = S'. So the Higgs field at infinity ¢> is the map
¢ : SL — S! with integer winding number N = deg(¢>). The mass of the Higgs field ¢ is then
my = VA and the gauge field mass is m4 = 1. Hence, the Ginzburg Landau energy simply
becomes

Elp, Al =V = %/ (Ff2 + D;¢D;é + 2(1 — W)?) d’x. (3.22)
R2

This can be rearranged into the Bogomolny form by integrating by parts,

Blo. A =5 [ { Fia =5 (1-19P)| + (D6 - iDud) (D1o + mm} &

45 [ i (D26D10 - DaDio) + Fia (L= 0P)} o+ 2 [ (1= 16P)* o (329
R2 k2

We will focus on critically coupled vortices (A = 1), so that the energy decomposes into positive
definite terms [13, 25]. This also forces the Higgs mass and the gauge boson mass to be equal to
unity. Using the commutation relation (2.41]), the third term can be written as

Dy¢D1¢ — Dy D1¢p = (a2<23 + iA2<Z_5) D1¢ — (315 + Z’A1<5) Dy
= 0y (pD1¢) — 01 (¢D29) + [Dy, Do) |9
= 05 (¢D19) — 01 (¢ D20) — iF12| 0. (3.24)

Thus, the static Ginzburg-Landau energy is now

2
E[p, A] = %/R Fiod?x + % /R { [Fm — % (1- |¢|2)} + (D1¢ — iD29) (D1¢p + ichb)} d*x
_ % (01 (8D29) — 0> (6D19) } d*x. (3.25)

RQ

One readily sees that the first term is proportional to the first Chern number ¢; via (2.81) — it is
exactly 7 times the first Chern number ¢;. As we already discussed in Section [3.2] the first Chern
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number ¢; is the winding number or vortex number A. So the first term is in fact 7 times the vortex
number . Now, we can express the last intergral as a line integral around the circle at infinity S!

/ (0, (6D20) — 05 (3D16)} P = / V % (6D16,8D16) da
R2 R2
_ yg (6D26, 6D16) - dx, (3.26)

1
which vanishes since the boundary conditions are now |¢| — 1 and D;¢ — 0 as |x| — co. Therefore,
the static energy may finally be written as

E[p, Al = 7N + % /R { [Fn - % (1- |¢|2)} + (D16 — iD29) (D1¢p + iD2¢)} d*x. (3.27)

Thus, in general, the static Ginzburg-Landau energy (3.27) has a lower bound, known as the Bogo-
molny bound:

E > 1|\, (3.28)

From here on, we are only going to be considering the case of positive vortex number N > 0,
however, the negative vortex number A/ < 0 case is analogous [19]. Solutions corresponding to ' > 0
are called vortices, whereas for AV < 0 they are referred to as anti-vortices. The Bogomolny bound
is saturated, i.e. F = 7, if and only if the Higgs field ¢ satisfies the Bogomolny equationﬂ

D1¢ + 1Dy = 0 (3.29)
Fip — % (1—1¢*) = 0. (3.30)

Field configurations which satisfy the first order Bogomolny equations and minimze the
static energy within their topological class, and thus are automatically solutions of the second order
static field equations and (3.7). Jaffe and Taubes [3] showed that all the solutions satisfying
the static field equations also satisfy the Bogomolny equations. Thus, it is sufficient to study the
Bogomolny equations in order to find solutions to the full static field equations.

We briefly digress to discuss the relation between the zeros of the Higgs field ¢ and its role in the
theory of superconductivity. The complex scalar Higgs field ¢ plays the role of an order parameter,
which gives rise to the density distribution of superconducting electron pairs, known as Cooper pairs
[5]. In particular, the Higgs field ¢ characterizes two phases of a solid: superconductivity and normal
states. If the order parameter ¢ is non-zero then it indicates the presence of Cooper pairs and, hence,
superconductivity. Whereas, if ¢ = 0 then it indicates the absence of Cooper pairs and the presence
of normal states. Consequently, if the order parameter ¢ is such that it is vanishing at some points
and non-vanishing elsewhere, then there exists a mixed state of superconducting and normal states.
When a superconductor transitions to its superconducting phase, then the magnetic field is unable
to penetrate the superconductor — this is known as the Meissner effect. Therefore, in this mixed
state, the magnetic field F}5 attains its local maxima at the positions where the order parameter ¢
vanishes, i.e. the zeros of the Higgs field ¢. Similarly, |D;¢|? also assumes its local maxima at the
zeros of the Higgs field ¢. Thus, the Hamiltonian density of the Ginzburg-Landau free energy ,

A
8
also attains its local maxima at the zeros of the Higgs field ¢. Essentially we have observed that

energy, and equivalently mass, are concentrated around the zeros of the Higgs field ¢. It should now
be clear that we can identify these static soliton solutions with particles.

Hip, Al = 5F% + 5 D6Dio + 2 (1~ [6)" (3.31)

2

Tt is easy to check that the second Bogomolny equation (3.30) is in accordance with Derrick’s theorem, E; = Ej.
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Another distinct result of Jaffe and Taubes [3] is that the multiplicities of the zeros of the Higgs
field ¢ are all positive, provided ¢ satisfies the Bogomolny equations. Hence, the sum of the multi-
plicities is the vortex number N. Thus, we see that solutions of the static field equations correspond
to NV static vortices, located at the zeros of the Higgs field ¢.

Using the identification R? 2 C, let us introduce the local complex coordinate z = z! + iz?, and
the following complex derivatives

@:%@rﬁéﬁ @z%@ﬁ%&) (3.32)

The connection 1-form is coordinate invariant and is given by A = A.dz + A:dz, where the gauge
potential components are

1 1
A, = §(A1 —iAy), As;= §(A1 +iAy). (3.33)
The curvature of the connection is the 2-form F' = F,; dz A dzZ, where

F..=0.A, — 0.A, = %Fw. (3.34)
This enables us to rewrite the Bogomolny equations (3.29)) and (3.30)) in terms of the local complex
coordinate z (and its complex conjugate z) as

D.p = 0.6 —iAsp =0 (3.35)

P = 21— o) (3.3

In this form, it is easily seen that the first Bogomolny equation (|3.35)) is a covariant generalization of
the Cauchy-Riemann equations. Is also allows us to eliminate the gauge field, via A; = —i0; log ¢.
Since the gauge group U(1) is Abelian, A, is simply the complex conjugate of A;, i.e. A, = i0, log ¢.
Let us express the Higgs field ¢ in terms of a gauge invariant quantity h by h = log|é[®. The
boundary condition |¢| — 1 as |x| — oo implies that h — 0 at spatial infinity. Hence, the magnetic
field F,s becomes

F.. =0.A; — 0:A, = —i0.0:log |p|* = —i0.0:h. (3.37)

Away from the zeros of the Higgs field ¢, where h has logarithmic singularities [32], the second
Bogomolny equation ({3.36]) is now
40,0:h +1 — e = 0. (3.38)

To allow for singularities, we can supplement this by d-function sources to obtain the gauge invariant
Taubes equation [16]

N
40.0:h+1— €' =4r Y 6°(2 - Z,), (3.39)

r=1
where {Z, : 1 < r < N} are the vortex centres in C, i.e. the (simple) zeros of the Higgs field ¢. Close
to a vortex centre Z,, the J-function sources enforce that h ~ 2log|z — Z,| and so |¢| ~ |z — Z,| in
the neighbourhood of the simple zero Z,. Away from the zeros, the Higgs fields ¢ rapidly approaches
its asymptotic value. We see that, for well-separated vortices, we can approximate an N-vortex
solution as a superposition of N charge-1 vortices, each of which we can regard as a single particle
of mass 7 carrying a magnetic flux 27 [23]. Note that the magnetic flux and the energy density are
concentrated about the vortex centres. Thus, solutions of Taubes’ equation can reasonably be

labelled as multi-vortex solutions of the Bogomolny equations and [25].

Taubes’ existence theorem [19] states that there exists a unique solution {¢, A} to the Bogomolny
equations and , determined by an arbitrary point (Z1,..., Zy) € Cx---xC = CV. This
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is provided the field configuration {¢, A} satisfies the boundary conditions |¢| — 1 and D;¢p — 0 as
|z| = oo, and the further condition

N
{zeC:9(z) =0} = J{2Z}. (3.40)

The N-vortex moduli space M,y is the space of smooth solutions (modulo gauge equivalence
[23]) to the Bogomolny equations with winding number N. By Taubes’ existence theorem, we can
uniquely determine each solution by choosing N unordered arbitrary points in C, provided they
satisfy the condition (3.40). The moduli space My is a 2N/-dimensional manifold, in particular,
the moduli space is CV /Sy, where Sy is the permutation group on N objects [2]. This is due to
solutions of Taubes’ equation being invariant under interchanges of vortex centres [25].

To obtain good global coordinates on the moduli space My, we define the degree N complex
polynomial [23] 25]

P(2)=Po+Piz+--+ Py 2Vt 4 2N

N
=1z - 2, (3.41)

where the vortex centres {Z, : 1 < r < N} are the roots of the monic polynomial. The set of
coefficients {P, : 0 < r < N — 1} provide good global coordinates on the moduli space M, and we
see that the moduli space is the topologically trivial space My = CV [23], which is diffeomorphic
to CN' /Sy [2]. Thus, the moduli space M inherits the natural complex manifold structure of CV.

3.3.1 Dynamics of critically coupled vortices

Before we go on to investigate the moduli space M and the form of the metric on M, we briefly
discuss the scattering behaviour of vortices in head-on collisions. As we are interested in low-energy
phenomena, our discussion will restrict to non-relativistic collisions where negligible radiation is
produced.

Consider the head-on collision of two critically coupled (A = 1) vortices. Low-velocity collisions
are approximately adiabatic, so the difference in energy before and after the collision is negligible.
Initially they are well-separated, so we can regard each vortice as an individual particle of mass 7.
Suppose the vortices collide at the centre of mass of the system, they subsequently scatter at 90°
relative to the incoming vortices. This observed phenomenon is referred to as right-angle scattering,
and has been observed for all coupling values A studied [II]. The right-angle scattering of two
critically coupled vortices is shown in Fig. [2|

There is a generalization of the right-angle scattering of two vortices in a head-on collision to N/
vortices. Consider N non-relativistic classically indistinguishable vortices with Cr symmetry, which
collide simultaneously at the centre of mass of the system. The vortices emerge from the collision
rotated by 7/N relative to the incoming one [2]. Energy density plots of /4 scattering of four
vortices with Cy symmetry are shown in Fig. [3]

For non-relativistic critically coupled vortices, we can model the vortex dynamics by geodesic
motion on the moduli space M of static solutions [27]. This brings us to the discussion of the
geodesic approximation.

3.4 (Geodesic approximation

Our aim is to motivate the geodesic approximation of low-velocity scattering of vortices at critical
coupling. Let A be the set of finite energy spatial field configurations a = {¢(x), 4;(x)} in R?, and
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(a) ()

Figure 2: Energy density plots of two critically coupled vortices during a head-on collision, illustrating
the right-angle scattering phenomena.
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(a) (b) (c)

Figure 3: Energy density plots of four vortices with Cy symmetry in a head-on collision, illustrating
the m/4 scattering.

g = {eif(x)} be the group of gauge transformations over R? [10]. Then the true configuration space
is the quotient C = A/G, which is a manifold since the gauge transformations tend to the identity at
spatial infinity [I2]. The kinetic energy is well-defined on A [2], and there exists a natural metric [

on A, given by [10]
1(Boa, Boa) — % / (00400 A; + 00d000) dPa. (3.42)
RQ

Taking the inner product of dpa with an infinitesimal gauge transformation dyr = {iA¢, );A} yields

[23]

[(Ooa, OyT) = %/RQ (aoAz'aiA - %(anoﬁb - ¢ao<23)) d*x

_ ! / (a BoA; + = (¢ao¢ ¢ao¢)) Adz, (3.43)
2 Jge

where we have used integration by parts on the first term. However, working in the Ay = 0 gauge,

Gauss’ law becomes
0;00A; + = (qb@oqb gb(?od)) = 0. (3.44)

Therefore, we see that Gauss’ law (3.44]) imposes that the generalized velocity dya is orthogonal in the
natural metric to the gauge group orbits through a [23]. By projecting the velocity, the metric ((3.42))
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is well defined on the true configuration space C — it is the kinetic energy functional (2.54)) over R?:

T, A :/Rz (é Z-Ei+%D_0¢DO¢) Pz

_ % / (00480 A; + Bob0) . (3.45)
]R2

Since the Ginzburg-Landau energy is trivially gauge invariant, and thus well defined on C, we
can project the Lagrangian (3.2)) (at critical coupling, A = 1) to an action on C [12]. Therefore, the
resulting dynamic problem can be interpreted as motion on C with the metric defined by the kinetic
energy , and the potential energy [23].

The geodesic approximation is a powerful method for investigating the low-energy dynamics and
scattering of vortices. At low velocities, the collisions of vortices can be treated adiabatically via
the geodesic approximation. The main idea is that these slowly-moving vortices are restricted to
motion tangent to the moduli space of static solutions M, where the evolution is governed by the
geodesic trajectories on M r. The kinetic energy functional induces the metric on the moduli
space M s, which, as we will see in Section [3.6] is Kahler. Thus, the dynamics of the vortices can be
accurately modelled by geodesic motion on M with respect to the Kahler metric induced by the
kinetic energy — this is the geodesic approximationﬂ.

3.5 Moduli space dynamics

It will be convenient for us to use the set of arbitrary ordered vortex centres {Z, : 1 < r < N'} as the
coordinates of the 2A/-dimensional moduli space My = CV. Note that CN = {Z, : 1 < r < N},
where the set is ordered, is a branched covering of My [23]. These coordinates are locally well
defined for separated vortices on Mys. Let Ay be the (2N — 2)-dimensional subspace, where some
or all vortices coincide [2]. Then the coordinates breakdown on the subspace Ayr. If we imagine the
vortices are described by point particles, the resulting metric is flat and well defined on CV = {Z,:
1 <r < N}. However, this metric is not well defined on the moduli space M, where it has conical
singularities on Ay [23]. As the vortices have short-range interactions, this ‘point-particle’ metric
and the vortex metric will agree asymptotically [23], which can easily be seen when one considers
the 2-vortex moduli space My (see Fig. [5)).

As previously discussed, the dynamics of critically coupled vortices reduces to geodesic motion on
the moduli space M. In this case, the potential energy is minimized and the Lagrangian becomes
purely kinetic. This kinetic energy induces a metric on M, and calculating the form of the moduli
space metric will be the topic of the next section. Consider the subspace My \Ax with distinct
coordinates {Z, : 1 < r < N}, this can be extended to My, by continuity [23]. In terms of the
coordinates, the metric is [2, 23]

N
ds® = (9rs dZ,dZ, + 9,5 AZ,dZ, + grs dZ,dZ,) . (3.46)

r,s=1

where the metric coefficients g,s, ¢,5 and gr; are dependent on the coordinates. In the next section,
we will show that the metric is Kahler such that g, = grs = 0. We also have that g,; is Hermitian,
i.e. g5 = Gsr, since the metric is real. The metric (3.46]) then becomes

N
s’ =Y grsdZ,dZ,, (3.47)

r,s=1

2This moduli space approximation is considered good provided the field excitations normal to M, are negligible.
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and the resulting Lagrangian is
N
1 R
L=_ E YAV 3.48
2 r,s=1 ! ( )

This results in geodesic motion at constant speed on the moduli space M [2].

3.6 Metric on the moduli space M,

In this section, we follow the work of Samols [23], who determined an expression for the Ké&hler metric
grs, and the associated Kéahler form w, on the N-vortex moduli space My,. Quite remarkably, the
metric can be expressed by analyzing local data around the A distinct vortices in the Higgs field ¢.
It will be shown that the metric on M \Ax has a smooth extension to the complete moduli space

My [27]. Our aim is to express the kinetic energy (3.45) in terms of {Z,} and {Zr} for 1 <r <N,
and thus determine the form of the metric on M.
3.6.1 Collective coordinates and fields

Let the time-dependent field configurations a = {¢(t), A;(t)} be N-vortex solutions of the Bogomolny
equations and (3.36)), where the distinctf]| vortex centres {Z.(t) : 1 < r < N’} move slowly.
Now suppose the generalized velocity dpa = {0y, Dy A;} satisfies Gauss’ law in the Ag =0
gauge, then the kinetic energy is

T[p, Al = % /R 2 (0 Ai00A; + 0000o9) d*x. (3.49)

Using the complex gauge field components (3.33)), the kinetic energy can be expressed as

T[p, Al = % [C (400 A:00A. + 099do9) d*x (3.50)

As we did in Section [3.3] we can express the Higgs field ¢ in terms of a gauge invariant quantity
1 .
h via h = log |¢|?, so that ¢ = e2"*% where ¢ is a phase factor [16]. Further, define [2]

1 .
1= 0o (log ¢) = §3oh + i0op, (3.51)

such that
o = on. (3.52)

Note that n has logarithmic singularities at the zeros of the Higgs field ¢. Then, as we previously
did, the first Bogomolny equation can be used to eliminate the gauge field. This yields
As = —i0:log ¢ and, by complex conjugation, A, = i0.log¢. Taking the time derivative of the
gauge field components (A, A;), and using the relation (3.52)), yields

Az = —i0:n, OhA, =1i0.7. (3.53)
Therefore, the first term in the kinetic energy integrand can be written in terms of 7 by
00A:00A, = 0.7n0:n. (3.54)
Similarly, from , the second term becomes

BoDo¢ = €. (3.55)

3 Assuming the zeros are distinct means the zeros all have multiplicity one.
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Hence, the kinetic energy (3.50) can now be expressed in terms of 7 as

1

T = 3 / (40.70:n + e"nn) d*x. (3.56)
C

Now, away from the zeros of the Higgs field ¢, we saw that the second Bogomolny equation (|3.36|)
reduces to Taubes’s equation in the form

Vih+1—e" =0, (3.57)
where V2 = 40,0; is the naive Laplacian. The time derivative of Taubes’ equation gives
(V2 —€") oh = 0. (3.58)
In terms of the complex gauge field components (A,, Az), Gauss’ law (3.44]) is given by
ﬂ@%&+ﬁﬁﬁg+%@%¢—ﬁWh:0 (3.59)
Using relations —, this becomes

2(0:00A; + 0:00A.) + %(fi;@mb — ¢Oo¢) = —2i0.0:n + 2i0:0.7] + % (0dm — doi)

= V20 — €" Oy, (3.60)
and thus Gauss’ law reduces to
(V2 —e") dop = 0. (3.61)
From the definition , we obtain, upon combining with ,
(V> —€e")n=0, (3.62)

which is only valid away from the zeros of the Higgs field ¢. Finite energy solutions impose the
boundary condition h — 0 as |z| — oco. We also require that |n| — 0 as |z| — oo, so that the
generalized velocity dya is finite in the metric [23]. The operator —V? + e” is a non-singular positive
definite operator [2], so any non-trivial solutions must have logarithmic singularities at the vortex
centres. We now want to extend the equation for n to include the vortex centres, and we note that
from Taubes’s equation (3.39)) we already have the form of h on C.
In the neighbourhood of a slowly moving zero (with multiplicity one), say Z,, the Higgs field ¢
can be given by
b= (z—7Z,)e", (3.63)

where k is smooth and finite [2]. This implies that
log ¢ = log(z — Z,) + k, (3.64)
and so, in the vicinity of a simple zero Z,., n takes the form
7.

1=y +0() (3.65)

Therefore, we see that n has simple poles at the vortex centres {Z,} with corresponding residues
{~Z.} for 1 <r < N. Around the vortex centre Z,, e" ~ |z — Z,|* and so e has no singularity
here. However, this is not the same for the V27 term, as we will see below. Now, in two dimensions,
we have the following result [2, 23]

V2log |z — Z,|* = 4n6%(2 — Z,.). (3.66)
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Differentiating (3.66]) with respect to Z, yields

9 o w2 L\ _ 0 o _ 2
aZTV loglz —Z,|°=V (Z_Zr>—47razr5(z Z,) = —4m0,6(z — Z,.). (3.67)

Thus, the extension of (3.62]) to the whole plane is given by

N
(V> —e")n=—4r Z 7,0.0%(z — 7). (3.68)

r=1

The solution to the Taubes’ equation (3.39)) can be related to the solution of (3.68)) in the following
way. Taking the Z, derivative of Taubes’ equation,

N
Vh+1—e'=4n) 6%z - Z,), (3.69)
r=1
we obtain o
WﬁﬂﬂaZ:—M@ﬁ@—a) (3.70)

From the linearity of (3.68)) [23], we deduce that
N
. Oh
= Lyp—r. 3.71
1 Z; 7 (3.71)

3.6.2 Kahler form of the metric

Consider the kinetic energy functional (3.56|), defined as an integral over the whole plane. Our focus
now is to express this in terms of local data in the vicinity of the A/ distinct vortex centres. Let’s
decompose the plane C into two regions, C\D and D, and let

N
D=|JD, (3.72)
r=1

be union of non-overlapping small disks D, of radius € with boundary C,, centred at Z,. [23]. The
kinetic energy then divides up into two parts:

1 1
TE:—/ (&Uﬁw+ﬁhm>fx+—/ﬁ@@m@n+&mﬁd%_ (3.73)
2 C\D 2 D

The second integral is over the small disks D, in the neighbourhood of the vortex centres, and so
vanishes in the limit ¢ — 0. Since 7 is smooth in the region C\ D, we can express the first integral as

1
T = —/ (40.70:n + ") P«
2 Jewn
1
= —/ (4@(778577) — 410.,0:n + ehfm) d’*x
2 Jewn
1
=92 0,(n0=m) d*x — = / i (V> —e")nda. (3.74)
C\D 2 o

As the integral region C\ D is away from the vortex centres, 1 thus satisfies (3.62)) and so the kinetic
energy reduces to

T=2 0,(n0:m) d*x. (3.75)
C\D
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Now, consider a domain S in C with boundary 05 traced anticlockwise, and let f(z, Z) be a differ-
entiable function. Then, using the identity [2]

/ Of d>xr =@ fnidl, (3.76)
S oS

we have the following result
1 1 )
s 2 /s 2 Jas 2 Jas

Using the identity (3.77)), the integral over C\ D can be transformed into a contour integral around the
circle at infinity SI plus the contour integrals around the disk boundaries C, (traced anticlockwise).
This is illustrated in Fig. . The kinetic energy (3.75)) splits as follows

N
T:z‘Zng ﬁagnd,zwél 70:n dz
r=1 T co

N
— 255 701 dz, (3.78)
r=1 Cr

where the contribution from S vanishes by virtue of the boundary condition |n| — 0 as |z| — oo.

Note that the minus sign in (3.78)) accounts for taking the contour integral anticlockwise around the
disk boundary C.
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Figure 4: The integration region C\ D, where D is the union of non-overlapping disks D, of radius €
with boundary C, traced anticlockwise, centred on Z,.

We will now follow the Green’s function approach set out by Manton [2] to show that the kinetic

energy 7' is real. Around the vortex centre Z,, in the region enclosed by |z — Z,.| = €, we can expand
h(z,z) as

1- 1 _ _
h:log|z—Zr|2—|—ar+§br(z—ZT)—|—Ebr(é—ZT)—I—ET(Z—ZT)Q+dr|z—Zr|2+cr(2—Zr)2—1—0(63), (3.79)
where a,,d, € R and b,,¢, € C [3]. The logarithmic term and the coefficient d, are determined
locally. In fact, in order for the expansion (3.79) to satisfy Taubes’ equation (3.69), we require

d, = —% [23]. The remaining coefficients are all determined by the positions of the other vortices Z;
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(s # ), but not in an explicitly known way [22]. In particular, b, (and b,) is the key coefficient — it
plays a central role in the form of the metric. Geometrically, b, measures the deviation of contours
of h around Z, from circles centred at Z, due to interactions with other vortices [16]. We will show
that certain symmetry properties of the derivatives of b, imply that the kinetic energy 7' is real and,
most importantly, that the metric is Kéhler.

The Green’s function construction is as follows. Recall equation (3.70]), we will show that aa—h
behaves like a Green’s function for the operator V2 — e”. Consider the integral, for r # s [2,

oh oh oh

\V& =4 — 7,) d?
Loz T ") 97, 4 aZ (2= 2)d%
=dr (2 — Z,) d*x
=41 0,— 3.80
" azs — (3.80)
where we have used integration by parts so that 02 operates on ;—Zhs. Thus, we see that ;—Zhr does
indeed manifest a type of Green’s function for V2 — e”. Similarly, we can use integration by parts SO
that V2 — e acts on 87 instead. It is easy to check that this results in the same form , but
with the role of Z, and Z, swapped. This yields the symmetry property
oh oh
0y = =0, — 3.81
0Zs|,_y. 02| ,_y. (3.:81)

In a similar manor, we can apply the exact same Green’s function approach to the complex conjugate
of (3.70)). This yields another symmetry property,

an
07,

0

0, s
z=Zr aZT

(3.82)

2=

which is also valid for r = s [2].
It should be clear by now that, from the expansion (3.79)), the symmetry relations derived above
will lead us to the desired symmetry relations for the derivatives of b, and bs. Writing the symmetry

relation (3.82)) out explicitly, and using the expansion (3.79), gives us

oh das 1 b, 10b, ) 1 .9b,
aaZTZ ’ 0 (82 +§aZT(Z—ZS)+Eazr(z—zs)—l-O(lZ—ZS’ )) Z:ZS_éaZT (383)
and
oh da, 1 0b, 1 9b, . 1 9b,
_- —— —7Z —— -7, —Z, = ——. .84
%oz, = (aZ T 307, " 4 T35, %) T O(: = 4] )> o, 207, (3:84)
From (3.82), the key symmetry relation follows, viz.
ob,  Ob,
A 3.85
0Zs 07, (3:85)

If we apply the same procedure to the first symmetry relation (3.81)), we get the resulting symmetry
relation _ _
db,  Ob,
0Zs 07,
Both symmetry relations and are valid for all » and s [2]. The importance of the
symmetry relation becomes manifest when we arrive at the form of the metric. As we will

(3.86)
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show below, the symmetry relation implies that the kinetic energy T is real and, consequently,
the metric is Kahler.

Returning from our brief digression, we now want to evaluate in terms of the symmetry
relation . In the neighbourhood of a vortex centre Z,, say the region bounded by the circle
|z — Zs| = ¢, the Taylor expansion of h is given by [23]

(e Z) b (5= Z) o2 — Z.)? —-yz 2o+ es(Z—Z,)°+O(). (3.87)

h = log |z—Zs|2—l—as+2

0]

In order to explicitly calculate n via (3.71), we need to determine %. Differentiating the expan-
sion (3.87)) with respect to vortex centre Z, yields

oh s das 1 Ob 10by, - 1- 1, =
z — ZS) —|— §8ZT (Z — Zs) — Ebsérs —I— Z(Z — Zs)érs

—2¢,(2 — Z)0ys + O(e).  (3.88)

97~ -z taz T30z

This gives the explicit form for  [2], upon substitution into (3.71)),

”_ZZaZ ZZ (

The terms in the kinetic energy integral are 77 and 0;7. From (3.89)), 7 is simply the complex conjugate
of this, i.e.

)+0( )= ——=~+0(1). (3.89)

Z

1=-—=+0(1). (3.90)
Z—
In the vicinity of Zs, from (3.88]), we have
oh 10b, 1

Hence,
N
. (10b, 1
ZU—ZZa ; <zaz + = 5S>+O(€). (3.92)

Therefore, the term in the kinetic energy integral (3.78)) becomes

10b, 1 1
70n = — ZZZ (282 + 70 >E_ZS+O(€) (3.93)

In the above form, we see that this expression has a simple pole with associated residue given by the
coefficient attached to (2 — Z,)~!. So, using the residue theorem (for an anti-holomorphic function),

the contour integral around C becomes
_ _ . 1 Ob, 1
5505 nosndz = —2mi Z g Z, <2 A §TS>]

— i, ZZ <;gg 15,«8> . (3.94)

Finally, with the contribution from all circles Cj, the kinetic energy (13.78|) reduces to

— _ﬂ Z ( » ) Z,.7.. (3.95)

r,s=1
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This is the fundamental result that we have been striving towards. We have shown that although
the metric was initially defined defined as an integral over the plane, it can remarkably be expressed
in terms of local data in the vicinity of each vortex. By the symmetry property , it is clear
that the kinetic energy T has to be real. It immediately follows that the metric on the N-vortex

moduli space My,
ds® = Z grsdZ,dZs =T Z < s ) dZ.dZ, (3.96)

r,s=1 r,s=1

is not just real, but it is also Kéhler [I6] 22] (this is shown below).

If we consider well separated vortices, then the contribution from b, and its derivatives are neg-
ligible. In this case, the metric simply reduces to the flat metric on CV times the vortex mass ,
ie.

N
ds’ =7 dZ.dZ,. (3.97)
r=1
This describes the metric on the asymptotic form of the moduli space My = CV /Sy, since the

vortices are indistinguishable [2].
The Kéhler 2-form associated with the metric (3.96)) is [27]

o N Ob,
W:EZ(arerQ&Z)dZ A dZ,. (3.98)

r,s=1

For a metric to be Kéhler, the Kahler form (3.98) must be closed, i.e. dw = 0 [2]. So, taking the
exterior derivative of the 2-form 1) gives [23]

2

aztaz

dw = i Z { 7 az dZ, NdZ, NdZ, + dZ, NdZ, N dZ, (3.99)

by virtue of the symmetry property (3.85]), and hence the metric is indeed Kéhler.

3.6.3 Kahler potential K for vortices on C

One of the main consequences of the hermicity identity (3.85) and the symmetry identity (3.86) is
that there exists a locally real function K of the collective coordinates, such that [10]

oK oK -

— =b,, — =b,. 1
0Z, 0Z, (3.100)
In terms of the function K, the metric is
N ~
0*K -
ds’ =7 Y | 0ps+2 _ | dZ,.dZ,. 101
’ Trrs:l ( i 8Zr8Z5> (3 O )

Chen and Manton [I6] evaluated the Kahler potential, using a scaling argument, and showed that
the Kéhler potential for vortices restricted to the scaling motion is given by

N
K=mn Z Z,Z, + 21K (3.102)

—WZZZ —27r/ ?{;/h(x;f)d%w/\/}, (3.103)

where the dimensionless parameter 7 measures the deviation of K under an overall scaling of the
vortex moduli space.
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3.6.4 Centre of mass motion

By considering a translation of all the vortices and noting that b, — 0 as the vortices separate, the
translational invariance of the entire system implies that [16]

N N
Zbr = ZBT =0. (3.104)

Similarly, the rotational invariance of the system implies the following result [2§]

N
> 02, —b.Z,) =0, (3.105)

r=1

and so the quantity Zf;l b.Z, is real. This enables us to define a centre of mass coordinate Z =
/%[(Zr Z,) and a set of relative coordinates ¢, = Z, — Z,1 < r < N — 1 which are unaffected by an
overall translation [2]. The metric then separates in the form

N-1
ds’ = NmndZdZ + ) Gps dC,dC, (3.106)

r,s=1
and, thus, M decomposes as an isometric product
My = C x MY, (3.107)

where MY, is the space of N -vortices with fixed centre [23].

3.6.5 2-Vortex metric on M,

The moduli space My decomposes into two 2-dimensional spaces My = C x M. Samols [23] showed
the decoupling of the centre of mass motion, and calculated that the metric (3.106]) reduces to

ds® = 2rdZdZ + F*(|¢|)d¢dC. (3.108)

It is convenient to introduce the polar coordinates (p, ) via ¢ = pe®, so that the vortices are located
at the positions (; = Z + pe? and (, = Z — pe?®. Considering the relative motion of the vortices, the
metric becomes [2]

rel

dsl, = F*(p) (dp® + p*d6?) (3.109)
where [22]

F%(p) = 2r (1 + %dip(pb(p))) : (3.110)

Here, the coefficients b; and by occur in the expansion of h about the vortex centres, and the rotation
and parity symmetries imply that by = —by = b(p)e?, where b(p) € R. Furthermore, Samols [23]
numerically determined the variable b(p) and thus F?(p).

We can represent the metric (3.109) by isometrically embedding the manifold M$ in R? as a
surface of revolution [23]. The manifold MY is a smoothed cone of half-opening angle 30° [2].
The geodesics passing over the top of the smoothed cone describe the right-angle scattering of two
vortices, as can be seen in Fig. [5] It can be shown (see e.g. [2,22,23]) that this surface is asymptotic
to the singluar cone C5. The geodesics on the cone C5 describe the non-interaction of a pair of
indistinguishable point-particles, therefore illustrating our earlier statement in regards to the ‘point-
particle’ metric and the vortex metric agreeing asymptotically.
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2
rel

Figure 5: Representation of the metric ds%, by isometrically embedding the manifold M3 as a surface

of revolution in R3.

4 Abelian Higgs vortices on H?

So far, we have considered the interactions of critically coupled vortices in the plane R%. However, we
are now going to consider the further generalization in which we discuss critically coupled vortices on
a general, compact Riemann surface M, without boundary. In particular, we are going to consider
the mathematically interesting case of Abelian Higgs vortices on the hyperbolic plane H? of curvature
—%. It will be shown that, at critical coupling, the Bogomolny equations for vortices on H? reduce
to the integrable Liouville’s equation, where explicit vortex solutions are readily obtainable.

4.1 Hyperbolic vortices

Let M be a compact 2-dimensional Riemann surface, or an open Riemann surface with a boundary at
infinity, equipped with a metric compatible with its complex structure [32]. In isothermal coordinatesﬂ
(', 2%) [2], let M have a compatible Riemannian metric with position-dependent conformal factor
QM)

dsg = Qu(z', 2%) ((da')? + (da®)?) = Que(z, 2) dz dz, (4.1)
where z = 2! + iz? is a local complex coordinate. Then spacetime is R x M with the metric
ds* = dt* — Qu(a', 2%) ((dz')? + (da®)?) . (4.2)

The fields are locally a U(1) gauge potential A and a complex Higgs field ¢. Globally, A is
a connection 1-form A = A; dz' + Ay dz? on a U(1) line bundle B over M, with fibre C, and ¢
is a section of the bundle B [18, 32]. The connection has 2-form field strength (curvature of the
connection) F = dA = (0, Ay — 02 A1) dx' A dz?. The first Chern number of the bundle is

1 1
N:%\/IWF:% MFlngl’, (43)
which takes a positive integer value, and is the only topological invariant of the bundle B [2]. This is
also true for non-compact Riemann surfaces provided the Higgs fields satisfy appropriate boundary
conditions [I8]. As before, the vortex centres are points on the surface M where the Higgs field ¢ van-
ishes, and the first Chern number of the bundle N is the vortex number (counted with multiplicity).
Moreover, the multiplicites are all positive which is ensured by the first Bogomolny equation.

4Locally, on a Riemannian manifold, coordinates which are isothermal means that the metric is conformal to the
Fuclidean metric.
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Recall the theory of scalar electrodynamics on curved spacetimes (refer to Section [2.2.1)). Then
we have a Riemannian manifold M equipped with the Riemannian metric h;;(z!, 22) = Qps d;5. The
natural measure on M is then ), d’z and the Lagrangian for scalar electrodynamics on M is given
by

1 1

o, A = [ (=3BwF + 50804~ 50~ 1077 ) Qur b (14)

We can split this Lagrangian in terms of its kinetic and potential energies, L = T — V. The
corresponding kinetic energy functional is given by

1 -
76,4 =5 [ (B + B+ QDi6Dos) da (45)
M
and the potential energy functional
1 FLoo A0
Vg, Al = —/ “12 4 Di¢Dy + DadDy + (1 — |92)? ) P (4.6)

Working in the Ay = 0 gauge, then the static energy functional is £ = V. Applying the Bogomolny
argument to £ at critical coupling, A = 1, we obtain

1 1 Qs N T ——— | )
Elp, Al = §/M @ {Fw T 9 (1 (4 )] + (D1¢ - 2D2¢) (D1¢+iD9¢p) p d°x

+ %/ {i (D20D1¢ — DapD19) + Fis (1 — |6]*) } d?z. (4.7)
M

Then, as we did in the flat plane R? case in Section , we can use the commutation relation ([2.41)
and the identity (3.24]) to rewrite the static energy as

Elp, Al = N + % /M {& [Fm — %‘4 (1- y¢|2)} + (D1¢ — iD29) (D1¢ + ¢D2¢)} d*x
— %/M {81 (QEDQQS) — 0y (&Dlﬁb)} d’x. (4.8)

The last intergral is that of the exact 2-form d(¢D¢), which vanishes as our compact surface M has
no boundary. Therefore, the static energy functional E' can be written as

E[p, A] = wN+%/M {i {Fm — QTM (1- |¢>|2)] + (D16 — iD29) (D19 + z’ngb)} d*z.  (4.9)

The standard Bogomolny argument used above shows that the static energy E satisfies the usual
Bogomolny bound

E > 7N, (4.10)
with E being stationary if and only if the Higgs fields satisfy the Bogomolny equations
D¢+ iDyp =0, (4.11)
Q
Fiy — TM(l —|o*) = 0. (4.12)

Fields which satisfy these Bogomolny equations minimize the static energy £ in their homotopy class
[24], which is determined by the first Chern number A. Note that, for a general compact Riemann
surface M of area Ay;, N-vortex solutions only exist if the following bound is satisfied [27]:

Ay > 4nN. (4.13)
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This bound, first calculated by Bradlow [26], can be obtained by integrating the second Bogomolny
equation (4.12)) over the surface M, which yields

2/ F12d2x+/ ]qﬁ\ZQMdzx:/ Qur d*z. (4.14)
M M M

The area element is Q; d?z and the first integral term is 27 times the Chern number N, so
M

Since the |¢|?Q) term is non-negative, we arrive at the Bradlow bound (4.13).

If the Bradlow bound is saturated exactly, i.e. Ay = 4mwA, then solutions exist and we are
able to solve both Bogomolny equations. In this case, from Eq. , the Higgs field ¢ vanishes
everywhere on M and the first Bogomolny equation is solved trivially. The second Bogomolny
equation reduces to Fip = %, so that the magnetic flux density has constant value % Since
the Higgs field ¢ vanishes everywhere on M, the solutions are merely limiting cases of vortices [18].

As we did previously, we can express the Higgs field ¢ in terms of a single gauge invariant quantity
h and a phase factor y by setting ¢ = e3htix, Then, from the first Bogomolny equation , this

enables us to express the gauge potential components (A, Ay) as
1 1
Al = 582h + 81)(, A2 = —§alh + 82X (416)

The second Bogomolny equation (4.12)) then becomes the gauge invariant Taubes equation
N
Veh+ Qu(a',2?) (1—et) =4r ) 6 (x - X,), (4.17)
r=1

where X,. are the vortex centres, where the Higgs field ¢ is zero.
It is convenient to introduce a local complex coordinate z = ' + iz? on M and let the vortex
positions on the surface M be given by {Z1, ..., Zx}. Then we can rewrite the Taubes equation (4.17)

in terms of z, Z as
N

40.0:h+ Q(2,2) (1= €") =4n Y 6%(2 = Z,). (4.18)
r=1
There is a unique solution to (4.18]), provided the strict Bradlow bound, A > 47N is satisfied.
Expanding the gauge invariant quantity h around the simple zero Z, of the field ¢ we obtain [16]

1- 1 -
h(Z, 2) = 10g |Z - ZT|2 +ar + Ebr(z - Zv") + §br(2 - Zr) + ET’(Z - Z’I’)Q

- iQM(Zr, Iz = Zo 4 er(Gm 2+ . (4.19)
The only difference between h here and the flat space case is that the coefficient d, = —iQ m(Ze, Z,).
Since the vortices are classically indistinguishable, the N -vortex moduli space M is diffeomorphic
to the symmetric product MY /Sy [27], where, as before, Sy is the permutation group on A objects.
It should be noted that, as in the planar case, the moduli space M has a smooth manifold structure
[2]. Samols [23] calculated that the generalized metric on the N-vortex moduli space My is

0b
0%,

N
ds* =7y (QM(Z,, Z,)0ps + 2

r,s=1

) dZ,.dZ,, (4.20)

which is again Kahler.
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4.1.1 Volume of moduli space M,

There exists a particularly interesting result of Manton and Nasir [27] in relation to vortices on a
compact Riemann surface M, of genus g. The statistical mechanics of these vortices [29] essentially
reduces down to computing the volume of the moduli space M,,. Remarkably, the volume of the
moduli space M can be determined without explicitly knowing the metric. We have already shown
that the moduli space M, is Kéhler, all we need in order to calculate the volume is the associated
Kéhler 2-form of the Kahler metric (4.20)). The associated Kéhler form is given by

. N
s Ob, -
w = E g (QM(ZM Z )61"5 + 2aZT) er A dZs (421)

r,s=1

By taking the exterior derivative, exaclty as we did in the flat plane case (see calculaton (3.99)), one
can show that w is closed. The volume of the moduli space My is given by [2]

v

My N
In the paper by Manton and Nasir [27], they investigate the problem from a cohomological

perspective and derive an expression for the cohomological class of the Kahler 2-form (4.21)). The
key result is the calculation of the following expression for the volume of the moduli space M :

wV 47T AM Ar NN =gl
Vol(My) = — =V , 4.23
M) My N Z —)g = 3)lJ! (4.23)

Vol(Myy) = (4.22)

which is only a function of the area of the Riemann surface M, the vortex number N, and its genus
g — it does not require any information about the shape of M.

4.2 Vortices on the hyperbolic plane H?

Now consider the case of Abelian Higgs vortices slowly-moving on the hyperbolic plane H?. We will
show that the coupled Bogomolny equations — are integrable on the hyperbolic plane H?
for the particular Gaussian curvature K = —z. To do this, we reduce the Bogomolny equations for
static N-vortices to Liouville’s equation on a disk [24], which can be solved exactly. We find that,
by introducing a holomorphic mapping f : H? — H?, we can construct N -vortex solutions on H?
in terms of the holomorphic map f, which must be a Blaschke rational function. In this case, the
vortex centres are ramification points of the map f, i.e. locations wherd'the derivative of f vanishes.

We begin by using the complex forms of the gauge field and the curvature tensor to

express the Bogomolny equations (4.11)) and (4.12)) in complex form, viz.

N |

D:p = 05 —iAs = 0, (4.24)
(2
Fio = =219, (4.25)

It is worth noting that these Bogomolny equations are covariant under conformal transformations.

Now, following Manton and Rink [I8], let the Higgs field be ¢ = v/H1, where H(z, %) is a metric
on the line bundle B, which is locally a positive real function on M [18], and ¢(z) is a holomorphic
function, which we will show below. So far, we have been working in the unitary gauge with H = 1.
However, we now have a larger gauge freedom in the Bogomolny equations and can apply a gauge
transformation g(z, z) € C*, where C* = C\{0}, that has the following effect [I§]:

=gy, P — gy, (4.26)
A, — A, —i(0.9)g7", A: — A —i(0:9)9 ", (4.27)
H— g 'g7'H. (4.28)
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We see that the magnitude of the Higgs field ||?,

61" = g~'g" Hgyg
= Hyn)
= |9]%, (4.29)

and the magnetic field strength F;,

Fzg — az (Ag — Z(ag )g_l) — ag (Az — Z(@Zg)g_l)
= 3ZA5 - agAZ
= F,;, (4.30)
are invariant under the gauge transformation g(z,z) € C*. Since v is a section of the line bundle

B, we can regard the metric H as a section of the tensor product of the dual bundles, B* ® B* [18].
Then the covariant derivatives are given by

Dz& = az& - Z-Azqua (4'32)
D,H = 0,H +iA,H — iA;. (4.33)

We are now also able to transform to a holomorphic gauge where A = 0 everywhere, and the line
bundle B becomes a holomorphic line bundle [I§]. In this holomorphic gauge, the first Bogomolny
equation reduces to the Cauchy-Riemann equation 0s1) = 0. Hence, v is a holomorphic section of
the line bundle B.

In the unitary gauge (H = 1) we have that the covariant derivative D,H = 0, so this vanishes in
any gauge. Then, in the holomorphic gauge, this is given by

D.H =0,H+iA,H =0, (4.34)
which has solution
A, =10,(logH), A;=0. (4.35)
This is known as the Chern connection. The corresponding curvature of the Chern connection is
F,: =—-0;A, = —i0,0: (log H) . (4.36)

Hence, the second Bogomolny equation (4.25)) simplifies to the Taubes equation, in the form

N
40.0: (log H) + Qu(1 — H[Y|*) = 4w Y " 6*(z — Z,). (4.37)
r=1

The Gaussian curvature Ky for a general Riemann surface M with metric ds* = Qy(z, 2)dzdz
is given by [21], 32]

2
Qumr
We are interested in the particular case that the hyperbolic metric €2;,dzdz has constant Gaussian
curvature K, = —%, which yields Liouville’s equation:

To construct an N -vortex solution on the Riemann surface M, let N also be a 2-dimensional
Riemann surface with local complex coordinate w, metric Qy(w, w), and curvature Ky = —%. Then
the hyperbolic metric 2y satisfies Liouville’s equation on N,

48w8w (log QN) == QN- (440)
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Now, let f: M — N be a non-constant holomorphic map given locally by the holomorphic function
w = f(2), and, working in holomorphic gauge [I§], let

_4

= —. 4.41
v(z)=2 (4.41)
Let the metric H on the holomorphic line bundle B be the ratio of metrics at z and f(z),
o _ S (f(2), f(2)
H = . 4.42
(27 ’Z) QM (Z, 2) ( )
Then, away fron any singularities [16] and using Eq. (4.41)) and Eq. (4.42), we have that
40.0; (log H) = —40,0: (log Q) + 40,0: (log Q)
df df
— —4 Uz 1 Q 4 wYn 1 Q -
0.0z (log Qpr) + 40,05 (log N)dzdz
=—Qu+ QN|Q/J|2
— (1 - HP). (4.43)

where we have used the chain rule and the Liouville equations for the metrics, (4.39) and (4.40)).
To sumamrize, given the holomorphic map f : M — N, we can construct an N -vortex solution
on M by letting our Higgs field be given by

_ Qv dfdf

2
91" = Qudzdz’

(4.44)

4.2.1 Rational solutions on H?

In this section, we work with the Poincaré disk model of H?, where H? = {z € C: |2| < 1} and the
hyperbolic metric is

ds* = Qe dzdz = 5 5dzdz, (4.45)

(1—1z?)

in which the conformal factor Qp satisfies Liouville’s equation. We can obtain N-vortex solutions

on H? by considering the holomorphic mapping f : H? — H?2, where the target H? is also represented

by the Poincaré disk model, with complex coordinate w and metric ds* = 8(1 — |w|?)"2dzdz. Then

the map f is a holomorphic map from the hyperbolic plane to itself, given by the function w = f(z).
Now, using the results we derived in the previous section, our bundle metric H is thus

_ (1—12)?
H(z,Z) = ————— (4.46)
(1 =1[f(2)?)?
and the general solution to the Taubes equation is given by the Higgs field
1—|2|? df
_ a 4.47
P ER A
with the first Bogomolny equation being satisfied if the Chern connection is
, 1—|2]? )
A, =1i0;log (— : 4.48
TBIE )

On the interior of the disk we require |f| < 1 and |f| = 1 on the boundary |z| = 1, mapping
boundary to boundary. To ensure that the boundary condition |¢| — 1 as |z| — 1 is satisfied, and
have finite vortex number N, one needs f to be a Blaschke rational function [I8], 24} [32]

N+1

fi) =[] (4.49)

1—a,,z

m=1
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with the arbitrary complex constants satisfying |a,,| < 1. Then the ramification points of the map
f are the arbitrary vortex positions in H?, where the Higgs field ¢ has simple zeros, and the Higgs
field takes its vacuum value everywhere on the boundary of the disk. It is worth noting that the
topological degree of the mapping is deg(f) = N +1. However, we can apply a Mébius transformation

f—c
1—cf’
with |¢| < 1, which leaves our field configuration {¢, A} unchanged up to gauge, and allows us to set
an+1 = 0 [24]. Hence, f(2) is now a rational map of the form

[ (4.50)

=z H — (4.51)

1—a,z

The N-vortex moduli space M has real dimension 2N and is parameterized by the N complex
coeflicients a,,, however, these are not natural coordinates on My, [24].

The simplest example of an A/-vortex solution is given by the map f(z) = z
sented by A vortices coincident at the origin [32]. In this case, the Higgs field is

(N+ 1)V
TP [P

N+1 which is repre-

1— |z
¢ = |2/|\f1
1 — |z2WV+D)

(N + 1) (4.52)

Density plots of this Higgs field ¢ = ¢1 + 1¢y for various vortex numbers are shown in Table |1 It
can be readily seen that the boundary condition |¢| — 1 is satisfied.
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5 Outlook and future work

In a paper of Spruck and Yang [30], they prove the Julia—Zee theorem for a (2 + 1)-dimensional
Minkowski spacetime R x R2. It would be interesting to see if there exists a generalization of the
Julia—Zee theorem (see Section to a spacetime R x M, where M is a general, compact Riemann
surface. We have already shown, in Section[2.2.1] that the temporal gauge field component A satisfies
the differential equation over M in the static case, thereby recovering the flat case by
setting €2 = 1. If the Julia—Zee theorem is generalizable to a spacetime R x M, this would imply
that in the static case Ag is a constant and, in particular, if ¢ is not identically zero then Ay = 0
everywhere on M. The resulting finite-energy static solutions of a (2 + 1)-dimensional spacetime
R x M would be necessarily electrically neutral.

There are a few variations on the theme that have been considered in the literature, they are
briefly detailed below for the reader.

In a recent stimulating paper, Manton [32] deduced a number of vortex equations that are in-
tegrable for surfaces of suitable curvature. Consider a Riemann surface M, which may be compact
or open with a boundary at spatial infinity, with position-dependent conformal factor €2;,. Manton
considers a two-parameter generalization of the static energy functional in the Abelian Higgs model,

2
E[¢, A] = /M{Fm _ 20 (D16D1¢ + DadDagp) + (—00+Cy¢\2)2} Qs d2z, (5.1)

0, Qu

where C' and Cj are real constants, which can be rescaled to -1, 0, or 1 [34]. Applying the Bogomolny
argument reduces this to

E[p, A] = —47r00/\/+/ {ﬁ [Fia + Qu (Co — (J|¢|2)}2 —2C| D1 + z‘D2¢|2} d*x. (5.2)
M

In this case, the Bogomolny equations are

D1+ iDap = 0 (5.3)
1
Q_F12 =—-Co+ C‘¢|2- (5.4)
M

Exactly as before, we can use the first Bogomolny equation ({5.3)) to eliminate the gauge potential.
Then by setting |¢|? = €%, away from the zeros of the Higgs field, the Taubes’ equation takes the
form

V?h + Qu (—Co + Ce*) = 0. (5.5)

Manton deduces that non-singluar vortex solutions exist for only five particular combinations of the
constants Cy and C. They are as follows:

e Cy = —1,C = —1: This yields the Taubes’ equation (4.17) (away from the logarithmic singu-
larities of h) that we have been considering throughout this paper;

e Cy = 0,C = 1: This gives the Jackiw—Pi vortex equation [35-37], arising in first order non-
relativistic Chern—Simons theory, where |¢|* tends to zero at the zeros of the Higgs field ¢ and
at spatial infinity (for non-compact surfaces);

e (o =1,C = 1: This is the Popov equation for integrable vortices on a 2-sphere of curvature
% [38, B9], which is a modified version of the Bogomolny equations for U(1) Abelian Higgs
vortices [40];

e Cy=—1,C = 0: This corresponds to the Bradlow limit for vortices [26], in which the Bradlow
bound (4.13)) is saturated exactly and the Higgs field ¢ vanishes everywhere;
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e Cy = —1,C = 1: This gives the Ambjgrn—Olesen vortex (for {2, = 1), in which they studied
instabilities in strong electroweak magnetism [41] [42]. The magnetic field strength is enhanced
away from the centres of the vortices, illustrating an anti-Meissner effect [32].

In a further paper of Contatto and Dunajski [34], they demonstrate that the five vortex equations
detailed above arise as the symmetry reduction of the anti-self-dual Yang—Mills equations in four
dimensions.

Maldonaldo and Manton [2I] constructed Abelian Higgs vortices on particular compact surfaces
of constant negative curvature, whose universal cover has a hyperbolic metric. They demonstrate
that these surfaces can be obtained as quotients of the hyperbolic plane.

A more recent paper of Maldonaldo [33] uses SO(2) and SO(3) invariant Yang—Mills instantons
to construct Yang—Mills-Higgs monopoles and vortices in hyperbolic space. From this, Maldonaldo
is able to determine a direct relation between hyperbolic monopoloes and hyperbolic vortices.
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Table 1: AN -vortex solutions corresponding to the holomorphic map f(z) = 2N+ Density plots of
(a) ¢1(xt, 2?), (b) ¢o(xt, 2?), and (c) |@|, where the Higgs field is ¢ = ¢ + idho. N-Vortex solutions
are shown for N € {1,2,3,4,5}, where the Higgs field ¢ is given by (4.52)).
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